【題目】數(shù)軸上的點(diǎn)A到原點(diǎn)的距離是4,則點(diǎn)A表示的數(shù)為(
A.4
B.﹣4
C.4或﹣4
D.2或﹣2

【答案】C
【解析】解:在數(shù)軸上,4和﹣4到原點(diǎn)的距離為4.
∴點(diǎn)A所表示的數(shù)是4和﹣4.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)軸的相關(guān)知識(shí),掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家電下鄉(xiāng)活動(dòng)期間,凡購(gòu)買指定家用電器的農(nóng)村居民均可得到該商品售價(jià)13%的財(cái)政補(bǔ)貼.村民小李購(gòu)買了一臺(tái)A型洗衣機(jī),小王購(gòu)買了一臺(tái)B型洗衣機(jī),兩人一共得到財(cái)政補(bǔ)貼351元,又知B型洗衣機(jī)售價(jià)比A型洗衣機(jī)售價(jià)多500元.求:

(1)A型洗衣機(jī)和B型洗衣機(jī)的售價(jià)各是多少元?

(2)小李和小王購(gòu)買洗衣機(jī)除財(cái)政補(bǔ)貼外實(shí)際各付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(1,﹣2)向上平移3個(gè)單位長(zhǎng)度,再向左平移2個(gè)單位長(zhǎng)度,得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是(
A.(﹣1,1)
B.(﹣1,﹣2)
C.(﹣1,2)
D.(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外活動(dòng)小組為了解本校學(xué)生上學(xué)常用的一種交通方式,隨機(jī)調(diào)查了本校部分學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計(jì)整理并制作了如下尚不完整的統(tǒng)計(jì)圖表:請(qǐng)根據(jù)以上信息解答下列問題:

1)參與本次調(diào)查的學(xué)生共有 人;

2)統(tǒng)計(jì)表中,m ,n ;扇形統(tǒng)計(jì)圖中,B組所對(duì)應(yīng)的圓心角的度數(shù)為 ;

3)若該校共有1500名學(xué)生,請(qǐng)估計(jì)全校騎自行車上學(xué)的學(xué)生人數(shù);

4)該小組據(jù)此次調(diào)查結(jié)果向?qū)W校建議擴(kuò)建學(xué)生車棚,若平均每4平方米能停放5輛自行車,請(qǐng)估計(jì)在現(xiàn)有300平方米車棚的基礎(chǔ)上,至少還需要擴(kuò)建多少平方米才能滿足學(xué)生停車需求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點(diǎn),判斷BM與BN的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)1k2時(shí),一次函數(shù)ykx2x+k的圖象一定不過的象限是( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程,其道理用幾何知識(shí)解釋正確的是(
A.線段可以比較大小
B.線段有兩個(gè)端點(diǎn)
C.兩點(diǎn)之間線段最短
D.過兩點(diǎn)有且只有一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CP是AB的中垂線且交AB于P,其中AP=2CP.甲、乙兩人想在AB上取兩點(diǎn)D、E,使得AD=DC=CE=EB,其作法如下: 甲:作∠ACP、∠BCP之角平分線,分別交AB于D、E,則D、E即為所求;
乙:作AC、BC之中垂線,分別交AB于D、E,則D、E即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確( 。

A.兩人都正確
B.兩人都錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.

求證:
(1)FC=AD
(2)AB=BC+AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案