【題目】如圖,的直徑,于點,交的延長線于點,且.

(1)的度數(shù).

(2)的半徑為2,求的長.

【答案】(1);(2).

【解析】

1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2A,求出∠D=COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;

2)由題意的半徑為2,求出OC=CD=2,根據(jù)勾股定理求出BD即可.

解:(1)∵OA=OC,

∴∠A=ACO,

∴∠COD=A+ACO=2A,

∵∠D=2A,

∴∠D=COD,

PD切⊙OC,

∴∠OCD=90°,

∴∠D=COD=45°;

2)∵∠D=COD,的半徑為2,

OC=OB=CD=2,

RtOCD中,由勾股定理得:22+22=2+BD2,

解得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的圖形MN,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N近距離,記作 dM,N).若圖形MN近距離小于或等于1,則稱圖形M,N互為可及圖形

1)當(dāng)⊙O的半徑為2時,

①如果點A0,1),B34),那么dA,⊙O=_______,dB,⊙O= ________;

②如果直線與⊙O互為可及圖形,求b的取值范圍;

2)⊙G的圓心G軸上,半徑為1,直線x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為可及圖形,直接寫出圓心G的橫坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點為,且過點.直線軸相交于點.

1)求該拋物線的解析式;

2)以線段為直徑的圓與射線相交于點,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點CFD的延長線上,點BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋中有完全相同的三個小球,把它們分別標(biāo)號為1,2,3. 小林和小華做一個游戲,按照以下方式抽取小球:先從布袋中隨機(jī)抽取一個小球,記下標(biāo)號后放回布袋中攪勻,再從布袋中隨機(jī)抽取一個小球, 記下標(biāo)號. 若兩次抽取的小球標(biāo)號之和為奇數(shù),小林贏;若標(biāo)號之和為偶數(shù),則小華贏.

1)用畫樹狀圖或列表的方法,列出前后兩次取出小球上所標(biāo)數(shù)字的所有可能情況;

2)請判斷這個游戲是否公平,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏打算在某外賣網(wǎng)站點如下表所示的菜品和米飯.已知每份訂單的配送費為3元,商家為促銷,對每份訂單的總價(不含配送費)提供滿減優(yōu)惠:滿30元減12元,滿60元減30元,滿100元減45.如果小敏在購買下表的所有菜品和米飯時,采取適當(dāng)?shù)南聠畏绞剑敲此目傎M用最低可為(

菜品

單價(含包裝費)

數(shù)量

水煮牛肉(。

30

1

醋溜土豆絲(。

12

1

豉汁排骨(。

30

1

手撕包菜(。

12

1

米飯

3

2

A.48B.51C.54D.59

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC中,點D為邊BC上一點,點E在邊AC上,且ADE=∠B

(1) 如圖1,若ABAC,求證:;

(2) 如圖2,若ADAE,求證:;

(3) (2)的條件下,若DAC=90°,且CE=4,tanBAD,則AB____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點 A(,4)和點B(8,),與坐標(biāo)軸分別交于點C和點D.

(1)求直線AB的解析式;

(2)觀察圖象,當(dāng)時,直接寫出的解集;

(3)若點P是軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠擬建一個如圖所示的矩形倉庫ABCD,倉庫的一邊是長為12m的一面墻,另外三邊用30m長的建筑材料圍成.設(shè)AB的長為xm,矩形ABCI的面積為Sm2

(1)用含x的代數(shù)式表示BC的長,并求出x的取值范圍.

(2)寫出S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

同步練習(xí)冊答案