【題目】已知矩形ABCD的一條邊AD4,將矩形ABCD折疊,使得頂點B落在邊上的P點處.

1)如圖1,已知折痕與邊BC交于點O,連結(jié)APOP、OA.求證:OCP∽△PDA;

2)若OCPPDA的面積比為14,求邊AB的長;

3)如圖2,在(1)(2)的條件下,擦去折痕AO線段OP,連結(jié)BP,動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BNPM,連結(jié)MNPB于點F,作MEBP于點E.試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

【答案】1)見解析;(2AB5;(3EF的長度不變,EF

【解析】

1)根據(jù)折疊的性質(zhì)得到∠APO=B=90°,根據(jù)相似三角形的判定定理證明△OCP∽△PDA;

2)根據(jù)相似三角形的面積比等于相似比的平方解答;

3)作MQABPBQ,根據(jù)等腰三角形的性質(zhì)和相似三角形的性質(zhì)得到EF=PB,根據(jù)勾股定理求出PB,計算即可.

1)∵四邊形ABCD是矩形,

ADBC,DCAB,∠DAB=∠B=∠C=∠D90°.

由折疊可得:APAB,POBO,∠PAO=∠BAO,∠APO=∠B

∴∠APO90°.

∴∠APD90°﹣∠CPO=∠POC

∵∠D=∠C,∠APD=∠POC

∴△OCP∽△PDA

2)∵△OCP∽△PDA且△OCP與△PDA的面積比為14

,

DA2CP

AD4,

CP2

設(shè)ABx,則APCDx,DPx2,

RtADP中,

∵∠D90°,AD4,DPx2APx

x2=(x22+42

解得:x5

AB5

3EF的長度不變.

如圖2,作MQABPBQ

∴∠MQP=∠ABP,

由折疊的性質(zhì)可知,∠APB=∠ABP,

∴∠MQP=∠APB,

MPMQ,又BNPM

MQBN,

MQAB,

QFFB,

MPMQ,MEBP,

PEQE,

EFPB,

由(2)得,PC2,BC4

PB ,

EF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,點E是邊BC的中點,AFEDAEDF

1)求證:四邊形AEDF為菱形;

2)試探究:當(dāng)ABBC  ,菱形AEDF為正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.健身達人小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們61日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:

請依據(jù)統(tǒng)計結(jié)果回答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   位好友.

(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.

①請補全條形圖;

②扇形圖中,“A”對應(yīng)扇形的圓心角為   度.

③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友61日這天行走的步數(shù)超過10000步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,CDABBE平分∠ABCCDF,EHCDH,則下列結(jié)論:①;②;③;④若FBE中點,則AD=3BD,其中正確的結(jié)論有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過反比例函數(shù)圖象上的點P1(1y1),P2(2y2),Pn(n,Pn)….作x軸的垂線,垂足分別為A1,A2,,An,連接A1P2,A2P3,,An1Pn,,再以A1P1A1P2為一組鄰邊畫一個平行四邊形A1P1B1P2,以A2P2,A2P3為一組鄰邊畫一個平行四邊形A2P2B2P3,依此類推,則點Bn的縱坐標(biāo)是______________(結(jié)果用含n代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D為⊙O上一點,連結(jié)AD、OD、BD,∠A=∠B30°.

1)求證:BD是⊙O的切線.

2)若OA5,求OAODAD圍成的扇形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、C為半徑是3的圓周上兩點,點B為弧AC的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓直徑的三等分點上,則該菱形的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)x1x2,x3,x4,x5的平均數(shù)是2,方差是1,則數(shù)據(jù)3x123x22,3x32,3x42,3x52的平均數(shù)是_____,方差是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點EAB的垂線,過點FCD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD∠BGC

1)求證:ADBC;

2)求證:△AGD∽△EGF;

3)如圖2,若AD、BC所在直線互相垂直,求的值.

查看答案和解析>>

同步練習(xí)冊答案