19.若關于a、b的多項式(a2-ab-b2)-(a2+mab+2b2)中不含ab項,則m=-1.

分析 先將多項式去括號,然后合并同類項,然后令ab項的系數(shù)為0即可求出答案.

解答 解:原式=a2-ab-b2-a2-mab-2b2
=(-1-m)ab-3b2
令-1-m=0,
∴m=-1
故答案為:-1;

點評 本題考查整式的加減,屬于基礎題型.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

9.在給出一組數(shù)0,π,$\sqrt{5}$,3.1415926,$\root{3}{9}$,$\frac{22}{7}$,0.1234567891011…(自然數(shù)依次相連),其中無理數(shù)有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.當n為正整數(shù)時,2(n+1)2+2(n+1)能被4整除嗎?請說明道理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.如圖,在Rt△ABC中,∠C=90°、AC=BC=4,點P從點C出發(fā)沿CA以每秒1個單位長度的速度向終點A運動,同時,點Q從點C出發(fā)沿CB-BA運動,點Q在CB上的速度為每秒2個單位長度,在BA上的速度為每秒$\sqrt{2}$個單位長度,當點P到達A點時,點Q隨之停止運動,以CP、CQ為鄰邊作?CPMQ.設?CPMQ與△ABC重疊部分圖形的面積為y,點P的運動時間為x秒.
(1)當點M落在AB上時,求x的值.
(2)當點Q在邊CB上運動時,求y與x的函數(shù)關系式
(3)直接寫出在P、Q兩點整個運動過程中,當?CPMQ與△ABC重疊部分圖形不是四邊形時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.將量角器按如圖所示的方式放置在三角形紙板上,使點C在半圓上.點A、B的讀數(shù)分別為86°、30°,則∠ACB的大小為(  )
A.28°B.30°C.43°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.一元一次方程如有括號,解方程時一般要先去括號,再移項、合并、將未知數(shù)系數(shù)化為1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.(1)2(2x+1)=1-5(x-2)
(2)$\frac{x-3}{5}$-$\frac{x-4}{10}$=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.在0,$\frac{22}{7}$,π-1,0.121121112…(每兩個2之間依次多一個1),0.6$\stackrel{•}{5}$這5個數(shù)中,無理數(shù)有2個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.問題探究:
拋物線y=-$\frac{1}{8}$x2+bx+2(b>0)與x軸交于A、B兩點,交y軸于C,直線y=kx與拋物線交于M、N兩點(M在y軸右邊,k>0),點C(0,2),點AO=2CO
(1)求此拋物線的解析式
(2)若△AMN的面積為16$\sqrt{2}$時,求k的值
(3)己知直線l:y=t(t>2),是否存在這樣的t的值,無論k取何值,以MN為直徑的圓總與直線l相切?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案