已知:如圖,⊙O的直徑為10,弦AC=8,點B在圓周上運(yùn)動(與A、C兩點不重合),連接BC、BA,過點C作CD⊥AB于D、設(shè)CB的長為x,CD的長為y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;當(dāng)以BC為直徑的圓與AC相切時,求y的值;
(2)在點B運(yùn)動的過程中,以CD為直徑的圓與⊙O有幾種位置關(guān)系,并求出不同位置時y的取值范圍;
(3)在點B運(yùn)動的過程中,如果過B作BE⊥AC于E,那么以BE為直徑的圓與⊙O能內(nèi)切嗎?若不能,說明理由;若能,求出BE的長.
精英家教網(wǎng)
分析:(1)∵直徑為10,弦AC=8,CD⊥AB,CB的長為x,CD的長為y,∴y=
4
5
x,當(dāng)以CB為直徑的圓與AC相切時,點B與點M重合,即可求解;
(2)①當(dāng)CB=CA=8時,兩圓內(nèi)切,②當(dāng)CB≠8時,兩圓相交;討論后即可得出答案;
(3)假設(shè)以BE為直徑的圓與⊙O可以內(nèi)切,看能否求出BE即可;
解答:精英家教網(wǎng)解:(1)如圖1,連接OA、OC、.過圓心O作OE⊥AC于點E.
∵直徑為10,弦AC=8,
∴OC=5,CE=8,∠AOE=∠COE.
又∵∠ABC=
1
2
∠AOC=∠COE,CD⊥AB,CB的長為x,
CD的長為y,
∴y=
4
5
x,當(dāng)以CB為直徑的圓與AC相切時,點B與點M重合,
此時,x=6,y=4.8;

(2)以DC為直徑的圓與⊙O的位置關(guān)系是相交或內(nèi)切,
①當(dāng)CB=CA=8時,兩圓內(nèi)切,y=
4
5
×8=6.4;
②當(dāng)CB≠8時,兩圓相交,0<y≤8,且y≠6.4.

(3)以BE為直徑的圓與⊙O可以內(nèi)切,
∵BE⊥AC,CD⊥AB,
∴BE=5-3=2或BE=5+3=8.
點評:本題考查了一次函數(shù)與圓與圓的位置關(guān)系,難度較大,關(guān)鍵是分類討論兩圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,從地面上的點P測得大樓的某扇窗戶A的仰角為37°,再從點P測得該大樓窗戶A正上方的另一扇精英家教網(wǎng)窗戶B,這時PA平分∠BPC.若點P到大樓的水平距離PC為10米.
(1)求∠BPC的度數(shù);
(2)試求窗戶B到地面的豎直高度BC(精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年江蘇省南通市通州區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標(biāo);若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案