【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點(diǎn)M,若H是AC的中點(diǎn),連接MH.

(1)求證:MH為⊙O的切線.

(2)若MH=,tan∠ABC=,求⊙O的半徑.

(3)在(2)的條件下分別過(guò)點(diǎn)A、B作⊙O的切線,兩切線交于點(diǎn)D,AD與⊙O相切于N點(diǎn),過(guò)N點(diǎn)作NQ⊥BC,垂足為E,且交⊙O于Q點(diǎn),求線段NQ的長(zhǎng)度.

【答案】(1)證明見(jiàn)解析;(2)2;(3).

【解析】

試題分析:(1)連接OH、OM,則OH為ABC的中位線,進(jìn)而可證明COH≌△MOH,∴∠HCO=HMO=90°,從而可知MH是O的切線;(2)由(1)可知MH=HC,H為AC中點(diǎn),CMH=90°,可得AC=3,再利用三角函數(shù)可求得BC=4,故半徑為2;(3)連接CN,AO,CN與AO相交于I,則AC=AN,又因?yàn)镺C=ON,可知AOCN, 利用面積可求得CI的長(zhǎng)度,設(shè)CE為x,然后利用勾股定理可求得CE的長(zhǎng)度,利用垂徑定理即可求得NQ.

試題解析: (1)連接OH、OM,H是AC的中點(diǎn),O是BC的中點(diǎn),OHAB,∴∠COH=ABC,MOH=OMB,又OB=OM,∴∠OMB=MBO,∴∠COH=MOH,又OH=OH,∴△COH≌△MOH(SAS),∴∠HCO=HMO=90°,

MH是O的切線;

(2)MH、AC是O的切線,HC=MH=AC=2HC=3,在RtABC中,ACB=90°,,BC=4,∴⊙O的半徑為2;(3)連接OA、CN、ON,OA與CN相交于點(diǎn)I,AC與AN都是O的切線,AC=AN,AO平分CAD,AOCN,AC=3,OC=2,,SACO=AC·OC=AO·CI,CI=,CN=2CI=.設(shè)OE=x,由勾股定理可得:CN2CE2=ON2OE2 ,,,在RtCEN中,,NQ=2EN=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工匠絕技,精益求精,中國(guó)船舶重工的鉗工顧秋亮憑著精到絲級(jí)的手藝,為海底探索者7000米級(jí)潛水器蛟龍?zhí)?/span>安裝觀察窗玻璃,成功地將玻璃與金屬窗座之間的縫隙控制在0.2絲米以下已知1絲米=0.0001,0.2絲米=0.00002米,則用科學(xué)記數(shù)表示數(shù)據(jù)0.00002_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=ACCFAE于點(diǎn)F,BDAE于點(diǎn)D.求證:ABD≌△CAF;

2)如圖2,點(diǎn)B、C分別在∠MAN的邊AMAN上,點(diǎn)E、F都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABECAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF

3)如圖3,在ABC中,AB=AC,ABBC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果長(zhǎng)方形ABCD的中心與平面直角坐標(biāo)系的原點(diǎn)重合,且點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-2,3)(2,3),則矩形ABCD的面積為(  )

A. 32 B. 24 C. 16 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對(duì)稱(chēng)

(1)填空:點(diǎn)B的坐標(biāo)是

(2)過(guò)點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過(guò)點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(zhǎng)(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說(shuō)明理由;

(3)在(2)的條件下,若點(diǎn)C關(guān)于直線BP的對(duì)稱(chēng)點(diǎn)C′恰好落在該拋物線的對(duì)稱(chēng)軸上,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫(huà)圖,保留痕跡)

(1)畫(huà)出格點(diǎn)ABC(頂點(diǎn)均在格點(diǎn)上)關(guān)于直線DE對(duì)稱(chēng)的A1B1C1

(2)在DE上畫(huà)出點(diǎn)Q,使QA+QC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的內(nèi)角和比它的外角和的2倍還大180°,這個(gè)多邊形的邊數(shù)是(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三個(gè)數(shù)(﹣2)3 , ﹣32 , ﹣(﹣1)中最小的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+1的算術(shù)平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c的平方根.

查看答案和解析>>

同步練習(xí)冊(cè)答案