【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C的中點(diǎn),點(diǎn)DOB上,點(diǎn)EOB的延長線上,當(dāng)正方形CDEF的邊長為2時,陰影部分的面積為________

【答案】2π-4

【解析】

連結(jié)OC,根據(jù)在同圓中,等弧所對的圓心角相等可得∠COD=45°,從而證出△ODC為等腰直角三角形,OD=CD=2,即可求出OC的長,然后根據(jù)陰影部分的面積=扇形BOC的面積-ODC的面積,即可求出陰影部分的面積.

解:連結(jié)OC,

∵在扇形AOB,AOB=90°,正方形CDEF的頂點(diǎn)C 的中點(diǎn),

∴∠COD=45°,

∴△ODC為等腰直角三角形,OD=CD=2

OC= =4,

∵陰影部分的面積=扇形BOC的面積-ODC的面積,

S陰影= ×π×42- ×(2 )2=2π-4

故答案為:2π-4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(﹣4,﹣4),則k的值為(  )

A. 16B. 3C. 5D. 5或﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每個人都應(yīng)懷有對水的敬畏之心,從點(diǎn)滴做起,節(jié)水、愛水,保護(hù)我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價”計費(fèi)方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是( 。

用水量x(噸)

3

4

5

6

7

頻數(shù)

1

2

5

4﹣x

x

A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點(diǎn)A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y1=x+mx軸、y軸分別交于點(diǎn)AB,與雙曲線x<0)分別交于點(diǎn)C-1,2Da,1).

1)分別求出直線及雙曲線的解析式;

2)利用圖象直接寫出,當(dāng)x在什么范圍內(nèi)取值時,y1>y2

(3)請把直線y1<y2時的部分用黑色筆描粗一些.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,把點(diǎn)先向右平移1個單位,再向上平移2個單位的平移稱為一次斜平移.已知點(diǎn)A1,0),點(diǎn)A經(jīng)過n次斜平移得到點(diǎn)B,點(diǎn)M是線段AB的中點(diǎn).

1)當(dāng)n=3時,點(diǎn)B的坐標(biāo)是 ,點(diǎn)M的坐標(biāo)是 ;

2)如圖1,當(dāng)點(diǎn)M落在的圖像上,求n的值;

3)如圖2,當(dāng)點(diǎn)M落在直線,點(diǎn)C是點(diǎn)B關(guān)于直線的對稱點(diǎn),BC與直線相交于點(diǎn)N

①求證:△ABC是直角三角形

②當(dāng)點(diǎn)C的坐標(biāo)為(5,3)時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB

1)求證:P為線段AB的中點(diǎn);

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,直徑垂直于弦,垂足為,連結(jié),將沿翻轉(zhuǎn)得到,直線與直線相交于點(diǎn)

1)求證:的切線;

2)若的中點(diǎn),,求的半徑長;

3)①求證:;

②若的面積為,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案