【題目】某賓館有50個(gè)房間供游客居住.當(dāng)每個(gè)房間每天的定價(jià)為160元時(shí),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用,房?jī)r(jià)定為多少時(shí),賓館利潤(rùn)最大?并求出一天的最大利潤(rùn)是多少?

【答案】房?jī)r(jià)單價(jià)為340元時(shí),賓館利潤(rùn)最大為10240

【解析】

看到利潤(rùn)最大,這一類形的問題都是利用二次函數(shù)在對(duì)稱軸處有最值,所以設(shè)房?jī)r(jià)位x,利潤(rùn)為y,利用公式,利潤(rùn)=每間房?jī)r(jià)×房間數(shù)量-每天開支,

,化為一般式,然后利用配方法,給出頂點(diǎn)式.即可給出最大利潤(rùn)和房?jī)r(jià)單價(jià).

解:設(shè)房?jī)r(jià)位x,利潤(rùn)為y

則有

x=340元時(shí),y的利潤(rùn)最大,最大值為10240

房?jī)r(jià)單價(jià)為340元時(shí),賓館利潤(rùn)最大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將等腰RtABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°得到△AB′C′,若AC=1,則圖中陰影部分面積為( 。

A.B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店欲購(gòu)進(jìn) A、B 兩種商品,若購(gòu)進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購(gòu)進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.

1)求 A、B 兩種商品每件的進(jìn)價(jià)分別為多少元?

2)若該商店每銷售 1A 種商品可獲利 8 元,每銷售 1B 種商品可獲利 6 元,該商店準(zhǔn)備購(gòu)進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過 344 元,則至少購(gòu)進(jìn)多少件 A 商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s,2cm/s的速度從點(diǎn)AC同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).

1)設(shè)運(yùn)動(dòng)時(shí)間為秒,則AP= cm,DQ= cm;

2)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),問經(jīng)過多長(zhǎng)時(shí)間PQ兩點(diǎn)之間的距離是10cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)以致用:?jiǎn)栴}1:怎樣用長(zhǎng)為的鐵絲圍成一個(gè)面積最大的矩形?

小學(xué)時(shí)我們就知道結(jié)論:圍成正方形時(shí)面積最大,即圍成邊長(zhǎng)為的正方形時(shí)面積最大為.請(qǐng)用你所學(xué)的二次函數(shù)的知識(shí)解釋原因.

思考驗(yàn)證:?jiǎn)栴}2:怎樣用鐵絲圍一個(gè)面積為且周長(zhǎng)最小的矩形?

小明猜測(cè):圍成正方形時(shí)周長(zhǎng)最小.

為了說明其中的道理,小明翻閱書籍,找到下面的結(jié)論:

、均為正實(shí)數(shù))中,若為定值,則,只有當(dāng)時(shí),有最小值

思考驗(yàn)證:證明:、均為正實(shí)數(shù))

請(qǐng)完成小明的證明過程:

證明:對(duì)于任意正實(shí)數(shù)

  

解決問題:

1)若,則  (當(dāng)且僅當(dāng)  時(shí)取

2)運(yùn)用上述結(jié)論證明小明對(duì)問題2的猜測(cè);

3)填空:當(dāng)時(shí),的最小值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

麗麗這學(xué)期學(xué)習(xí)了軸對(duì)稱的知識(shí),知道了像角、等腰三角形、正方形、圓等圖形都是軸對(duì)稱圖形.類比這一特性,麗麗發(fā)現(xiàn)像m+n,mnp等代數(shù)式,如果任意交換兩個(gè)字母的位置,式子的值都不變.太神奇了!于是她把這樣的式子命名為神奇對(duì)稱式.

她還發(fā)現(xiàn)像,(m-1)(n-1)等神奇對(duì)稱式都可以用表示.例如:.于是麗麗把稱為基本神奇對(duì)稱式 .

請(qǐng)根據(jù)以上材料解決下列問題:

(1)代數(shù)式① , ② , ③, ④ xy + yz + zx中,屬于神奇對(duì)稱式的是__________(填序號(hào));

(2)已知.

q=__________(用含m,n的代數(shù)式表示);

② 若,則神奇對(duì)稱式=__________;

③ 若 ,求神奇對(duì)稱式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶葉專賣店經(jīng)銷一種日照綠茶,每千克成本元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月的銷售量(千克)與銷售單價(jià)(元/千克)之間存在如圖所示的變化規(guī)律.

求每月銷售量與銷售單價(jià)之間的函數(shù)關(guān)系式.

若某月該茶葉點(diǎn)銷售這種綠茶獲得利潤(rùn)元,試求該月茶葉的銷售單價(jià)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的速度勻速移動(dòng).點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動(dòng)到某一位置時(shí)所需時(shí)間為t秒.

(1)當(dāng)t=2時(shí),求線段PQ的長(zhǎng)度;

(2)當(dāng)t為何值時(shí),PCQ的面積等于5cm2

(3)在P、Q運(yùn)動(dòng)過程中,在某一時(shí)刻,若將PQC翻折,得到EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,點(diǎn)AD、E在同一條直線上,BCAE相交于點(diǎn)O,連接BE,若∠CAB=CBA=CDE=CED=50°。

1)求證:AD=BE;

2)求∠AEB! 

查看答案和解析>>

同步練習(xí)冊(cè)答案