【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開始的內(nèi)只進(jìn)水不出水,在隨后的內(nèi)既進(jìn)水又出水,每分鐘進(jìn)水量和出水量是兩個(gè)常數(shù).容器內(nèi)的水量(單位:)與時(shí)間(單位:)之間的關(guān)系如圖所示.

1)當(dāng)時(shí),求出關(guān)于的函數(shù)解析式;

2)每分鐘的進(jìn)水量與出水量各是多少?

【答案】1;(2)每分鐘的進(jìn)水量為,出水量為

【解析】

1)用待定系數(shù)法求出對(duì)應(yīng)的函數(shù)關(guān)系式即可;

2)根據(jù)前4分鐘即可求出每分鐘的進(jìn)水量,根據(jù)后8分鐘的水量變化即可求出每分鐘的出水量.

解:(1)設(shè)當(dāng)時(shí),關(guān)于的函數(shù)解析式為

將(4,20),(12,30)兩點(diǎn)代入,得

解得

∴當(dāng)時(shí),關(guān)于的函數(shù)解析式為

2)根據(jù)圖像可知,每分鐘的進(jìn)水量為,

設(shè)每分鐘出水量為升,則,

解得:

∴每分鐘的進(jìn)水量為,出水量為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在參加了全市教育質(zhì)量綜合評(píng)價(jià)學(xué)業(yè)素養(yǎng)測(cè)試后,隨機(jī)抽取八年級(jí)部分學(xué)生,針對(duì)發(fā)展水平四個(gè)維度“閱讀素養(yǎng)、數(shù)學(xué)素養(yǎng)、科學(xué)素養(yǎng)、人文素養(yǎng)”,開展了“你最需要提升的學(xué)業(yè)素養(yǎng)”問卷調(diào)查(每名學(xué)生必選且只能選擇一項(xiàng)).小明、小穎和小雯在協(xié)助老師進(jìn)行統(tǒng)計(jì)后,有這樣一段對(duì)話:

小明:“選科學(xué)素養(yǎng)和人文素養(yǎng)的同學(xué)分別為人,人.”

小穎:“選數(shù)學(xué)素養(yǎng)的同學(xué)比選閱讀素養(yǎng)的同學(xué)少人.”

小雯:“選科學(xué)素養(yǎng)的同學(xué)占樣本總數(shù)的.”

1)這次抽樣調(diào)查了多少名學(xué)生?

2)樣本總數(shù)中,選“閱讀素養(yǎng)”、“數(shù)學(xué)素養(yǎng)”的學(xué)生各多少人?

3)如圖是調(diào)查結(jié)果整理后繪制成的扇形圖.請(qǐng)直接在橫線上補(bǔ)全相關(guān)百分比,并求出“數(shù)學(xué)素養(yǎng)”所對(duì)應(yīng)的圓心角度數(shù);

4)該校八年級(jí)有學(xué)生人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)全年級(jí)選擇“閱讀素養(yǎng)”的學(xué)生有多少人?

[Failed to download image : blob:http://qbm.xkw.com/61c6a1d7-da76-4939-b41e-e8015f4fdd80]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1是正方形上的一點(diǎn),連接,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn).寫出線段,之間的數(shù)量關(guān)系,并說明理由;

2)當(dāng)四邊形為菱形,,點(diǎn)是菱形所在直線上的一點(diǎn),連接、,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線交于點(diǎn)和點(diǎn)

①如圖2,點(diǎn)在線段上時(shí),請(qǐng)?zhí)骄烤段,之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

②如圖3,點(diǎn)在線段的延長(zhǎng)線上時(shí),交射線于點(diǎn),若,,直接寫出線段的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購(gòu)進(jìn)、兩種商品,購(gòu)買1個(gè)商品比購(gòu)買1個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買商品和花費(fèi)100元購(gòu)買商品的數(shù)量相等.

1)求購(gòu)買一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購(gòu)買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購(gòu)買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是弧AB所對(duì)弦AB上一動(dòng)點(diǎn),過點(diǎn)PPM⊥ABAB于點(diǎn)M,連接MB,過點(diǎn)PPN⊥MB于點(diǎn)N.已知AB =6cm,設(shè)A 、P兩點(diǎn)間的距離為xcm,P、N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究

下面是小東的探究過程,請(qǐng)補(bǔ)充完整:

(1)通過取點(diǎn)、畫圖、測(cè)量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.0

2.3

2.1

0.9

0

(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.

(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△PAN為等腰三角形時(shí),AP的長(zhǎng)度約為____________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,分別是,軸上的點(diǎn),且,為線段的中點(diǎn),軸正半軸上的任意一點(diǎn),連結(jié),以為邊按順時(shí)針方向作正方形

1)填空:點(diǎn)的坐標(biāo)為______;

2)記正方形的面積為,①求關(guān)于的函數(shù)關(guān)系式;②當(dāng)時(shí),求的值.

3)是否存在滿足條件的的值,使正方形的頂點(diǎn)落在的邊上?若存在,求出所有滿足條件的的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,張老師引導(dǎo)同學(xué)進(jìn)行如下探究:如圖1,將長(zhǎng)為的鉛筆斜靠在垂直于水平桌面的直尺的邊沿上,一端固定在桌面上,圖2是示意圖.

活動(dòng)一

如圖3,將鉛筆繞端點(diǎn)順時(shí)針旋轉(zhuǎn),交于點(diǎn),當(dāng)旋轉(zhuǎn)至水平位置時(shí),鉛筆的中點(diǎn)與點(diǎn)重合.

數(shù)學(xué)思考

1)設(shè),點(diǎn)的距離

①用含的代數(shù)式表示:的長(zhǎng)是_________,的長(zhǎng)是________

的函數(shù)關(guān)系式是_____________,自變量的取值范圍是____________

活動(dòng)二

2)①列表:根據(jù)(1)中所求函數(shù)關(guān)系式計(jì)算并補(bǔ)全表格.

6

5

4

3.5

3

2.5

2

1

0.5

0

0

0.55

1.2

1.58

1.0

2.47

3

4.29

5.08

②描點(diǎn):根據(jù)表中數(shù)值,描出①中剩余的兩個(gè)點(diǎn)

③連線:在平面直角坐標(biāo)系中,請(qǐng)用平滑的曲線畫出該函數(shù)的圖象.

數(shù)學(xué)思考

3)請(qǐng)你結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì)或結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l及直線l外一點(diǎn)P.如圖,

1)在直線l上取一點(diǎn)A,連接PA;

2)作PA的垂直平分線MN,分別交直線lPA于點(diǎn)B,O;

3)以O為圓心,OB長(zhǎng)為半徑畫弧,交直線MN于另一點(diǎn)Q;

4)作直線PQ

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( 。

A.OPQ≌△OABB.PQAB

C.APBQD.PQPA,則∠APQ60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D,點(diǎn)D的橫坐標(biāo)為-4

1)求直線的函數(shù)解析式;

2)求拋物線的函數(shù)解析式;

3)分別求出tanABCtanBAC的值;

4)在第一象限的拋物線上是否存在點(diǎn)P,使得以A,B,P為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案