【題目】如圖1,AB∥CD,點E,F分別在直線CD,AB上,∠BEC=2∠BEF,過點A作AG⊥BE的延長線交于點G,交CD于點N,AK平分∠BAG,交EF于點H,交BE于點M.
(1)直接寫出∠AHE,∠FAH,∠KEH之間的關(guān)系:________;
(2)若∠BEF=∠BAK,求∠AHE;
(3)如圖2,在(2)的條件下,將△KHE繞著點E以每秒5°的速度逆時針旋轉(zhuǎn),旋轉(zhuǎn)時間為t,當(dāng)KE邊與射線ED重合時停止,則在旋轉(zhuǎn)過程中,當(dāng)△KHE的其中一邊與△ENG的某一邊平行時,直接寫出此時t的值.
【答案】(1)∠AHE=∠KEH+∠FAH;(2)75°;(3)t=6、12、21、24、30.
【解析】
(1)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得答案;
(2)設(shè)∠BEF=x,用x分別表示出∠BAK、∠BEC、∠BAK、∠KAG、∠AME和∠AHE,再由AG⊥BE,得關(guān)于x的方程,解得x的值,則問題可解;
(3)由(2)可得,∠KHE=105°,再分4種情況列方程求解即可:①當(dāng)KH∥EN時;②當(dāng)kE∥GN時;③當(dāng)HE∥GN時;④當(dāng)HK∥GN時.
解:(1)∵AB∥CD
∴∠KEH=∠AFH
∵∠AHE=∠AFH+∠FAH
∴∠AHE=∠KEH+∠FAH
故答案為: ∠AHE=∠KEH+∠FAH
(2)設(shè)∠BEF=x
∵∠BEF= ∠BAK,∠BEC=2∠BEF
∴∠BAK=∠BEC=2x
∵AK平分∠BAG
∴∠BAK=∠KAG=2x
由(1)的結(jié)論可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x
∵AG⊥BE
∴∠G=90°
∴∠AME+∠KAG=2x+4x=90°
∴x=15°
∴∠AHE=5x=75°;
(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°
①當(dāng)KH∥NG時
5°×t=60°-30°=30°
∴t=6
②當(dāng)KE∥GN時
5°×t=60°
∴t=12
③當(dāng)HE∥GN時
5°×t=45°+60°=105°
∴t=21
④當(dāng)HK∥EG時,
5°×t=180°-30°-30°=120°
∴t=24
⑤當(dāng)HK∥EN時,5t=150°
∴t=30
綜上所述,t的值為:6或12或21或24或30.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′,則這根蘆葦AB的長是( 。
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平安路與幸福路是兩條平行的道路,且都與新興大街垂直,老街與小米胡同垂直,書店位于老街與小米胡同的交口處.如果小強同學(xué)站在平安路與新興大街交叉路口,準備去書店,按圖中的街道行走,最近的路程為( 。
A. 300m B. 400m C. 500m D. 700m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC是 的內(nèi)接等邊三角形,AB=1.點D , E在圓上,四邊形 為矩形,則這個矩形的面積是( )
A.
B.
C.
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,l1反映了某公司銷售一種醫(yī)療器械的銷售收入(萬元)與銷售量(臺)之間的關(guān)系,l2反映了該公司銷售該種醫(yī)療器械的銷售成本(萬元)與銷售量(臺)之間的關(guān)系.當(dāng)銷售收入大于銷售成本時,該醫(yī)療器械才開始贏利.根據(jù)圖象,則下列判斷中錯誤的是( )
A. 當(dāng)銷售量為4臺時,該公司贏利4萬元
B. 當(dāng)銷售量多于4臺時,該公司才開始贏利
C. 當(dāng)銷售量為2臺時,該公司虧本1萬元
D. 當(dāng)銷售量為6臺時,該公司贏利1萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,四邊形ABCD四個頂點的坐標分別為A(-2,0),B(-1,2),C(3,3),D(4, 0).
(1)畫出四邊形ABCD;
(2)把四邊形ABCD向下平移4個單位長度,再向左平移2個單位長度得到四邊形A′B′C′D′,畫出四邊形A′B′C′D′,并寫出C′的坐標。
(3)求出四邊形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y=x2+bx+c 交 軸于點A(0,-1)且過點 , P是拋物線C上一個動點,過P作PB∥OA,以P為圓心,2為半徑的圓交PB于C、D兩點(點D位于點C下方).
(1)求拋物線C的解析式;
(2)連接AP交⊙P于點E,連接DE,AC.若ΔACP是以CP為直角邊的直角三角形,求∠EDC的度數(shù);
(3)若當(dāng)點P經(jīng)過拋物線C上所有的點后,點D隨之經(jīng)過的路線被直線 截得的線段長為8,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com