【題目】如圖,點(diǎn)A(﹣2,0)、B(4,0)、C(3,3)在拋物線y=ax2+bx+c上,點(diǎn)D在y軸上,且DC⊥BC,∠BCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后兩邊與x軸、y軸分別相交于點(diǎn)E、F.

(1)求拋物線的解析式;
(2)CF能否經(jīng)過拋物線的頂點(diǎn)?若能,求出此時(shí)點(diǎn)E的坐標(biāo);若不能,說明理由;
(3)若△FDC是等腰三角形,求點(diǎn)F的坐標(biāo).

【答案】
(1)

解:由拋物線與X軸的兩個(gè)交點(diǎn)A、B的坐標(biāo),

可以由兩根式設(shè)拋物線解析式為:y=a(x+2)(x﹣4),

然后將C點(diǎn)坐標(biāo)代入得:a(3+2)(3﹣4)=3,

解得:a=﹣ ,

故拋物線解析式是:y=﹣ (x+2)(x﹣4)


(2)

解:由C、B兩點(diǎn)坐標(biāo)利用待定系數(shù)法可以求得CB直線方程為:y=﹣3x+12,

∵CD⊥CB,

∴CD直線方程可以設(shè)為:

y= x+m,

將C點(diǎn)坐標(biāo)代入得:m=2,

∴CD直線方程為:y= x+2,

∴D點(diǎn)坐標(biāo)為:D(0,2),

由拋物線解析式可以頂點(diǎn)公式或?qū)ΨQ軸x=1解得頂點(diǎn)M坐標(biāo)為M(1, ),

∴由C、M兩點(diǎn)坐標(biāo)可以求得CM即CF直線方程為:y=﹣ x+ ,

∴F點(diǎn)坐標(biāo)為:F(0, ),

∴CE直線方程可以設(shè)為:y= x+n,

將C點(diǎn)坐標(biāo)代入得:n= ,

∴CE直線方程為:y= x+ ,

令y=0,解得:x=﹣ ,

∴E點(diǎn)坐標(biāo)為E(﹣ ,0),

∴能;


(3)

解:由C、D兩點(diǎn)坐標(biāo)可以求得CD= ,

則△FDC是等腰△可以有三種情形:

① FD=CD= ,

則F點(diǎn)坐標(biāo)為F(0,2+ ),

②FC=CD= ,過C點(diǎn)作y軸垂線,垂足為H點(diǎn),

則DH=1,

則FH=1,

則F點(diǎn)坐標(biāo)為F(0,4),

③FD=FC,作DC的中垂線FG,交y軸于F點(diǎn),交DC于G點(diǎn),

由中點(diǎn)公式得G點(diǎn)坐標(biāo)為G( , ),

由DC兩點(diǎn)可以求得DC直線方程為:y= x+2,

則FG直線方程可以設(shè)為:y=﹣3x+p,

將G點(diǎn)坐標(biāo)代入解得:p=7,

故F點(diǎn)坐標(biāo)為(0,7).


【解析】(1)由拋物線與X軸的兩個(gè)交點(diǎn)A、B的坐標(biāo),可以由兩根式設(shè)拋物線解析式為:y=a(x+2)(x﹣4),求出a的值即可;(2)由C、B兩點(diǎn)坐標(biāo)利用待定系數(shù)法可以求得CB直線方程為:y=﹣3x+12,設(shè)CD直線方程可以設(shè)為:y= x+m,求出m的值,進(jìn)而求出D點(diǎn)的值,由拋物線解析式可以頂點(diǎn)公式或?qū)ΨQ軸x=1解得頂點(diǎn)M坐標(biāo),由C、M兩點(diǎn)坐標(biāo)可以求得CM即CF直線方程,CE直線方程可以設(shè)為:y= x+n,求出n的值,進(jìn)而求出E點(diǎn)的坐標(biāo);(3)由C、D兩點(diǎn)坐標(biāo)可以求得CD= ,△FDC是等腰△可以有三種情形:①當(dāng)FD=CD;②FC=CD;③FD=FC,分別求出F點(diǎn)的坐標(biāo)即可;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)積極開展陽光體育活動(dòng),共開設(shè)了跳繩、乒乓球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出)

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)根據(jù)統(tǒng)計(jì)的數(shù)據(jù)估計(jì)該中學(xué)3200名學(xué)生中最喜愛籃球的人數(shù)約有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補(bǔ)充條件后仍不一定能保證ABC≌△ABC,則補(bǔ)充的這個(gè)條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期天,李玉剛同學(xué)隨爸爸媽媽會(huì)老家探望爺爺奶奶,爸爸8:30騎自行車先走,平均每小時(shí)騎行20km;李玉剛同學(xué)和媽媽9:30乘公交車后行,公交車平均速度是40km/h.爸爸的騎行路線與李玉剛同學(xué)和媽媽的乘車路線相同,路程均為40km/h.設(shè)爸爸騎行時(shí)間為xh

1請分別寫出爸爸的騎行路程y1km、李玉剛同學(xué)和媽媽的乘車路程y2km與xh之間的函數(shù)解析式,并注明自變量的取值范圍;

2請?jiān)谕粋(gè)平面直角坐標(biāo)系中畫出1中兩個(gè)函數(shù)的圖象;

3請回答誰先到達(dá)老家.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)甲、乙兩種商品,購進(jìn) 4 件甲種商品比購進(jìn) 5 件乙種商品少用 10 元,購 進(jìn) 20 件甲種商品和 10 件乙種商品共用去 160 .

(1)求甲、乙兩種商品每件進(jìn)價(jià)分別是多少元?

(2)若該商店購進(jìn)甲、乙兩種商品共 140 件,都標(biāo)價(jià) 10 元出售,售出一部分降價(jià)促銷, 以標(biāo)價(jià)的八折售完所有剩余商品,以 10 元售出的商品件數(shù)比購進(jìn)甲種商品件數(shù)少 20 件,該商店此次購進(jìn)甲、乙兩種商品降價(jià)前后共獲利不少于 420 元,求至少購進(jìn)甲種商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積法進(jìn)行證明,著名數(shù)學(xué)家華羅庚曾提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進(jìn)行第一次談話的語言.

[定理表述]

請你寫出勾股定理內(nèi)容(用文字語言表述):

[嘗試證明]

以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a、b為底,以(a+b)為高的直角梯形(如圖2),請你利用圖2,證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時(shí),四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,∠BCA=90°,BC=AC,D是BA邊上一點(diǎn)(點(diǎn)D不與A,B重合),M是CA中點(diǎn),當(dāng)以CD為直徑的⊙O與BA邊交于點(diǎn)N,⊙O與射線NM交于點(diǎn)E,連接CE,DE.
(1)求證:BN=AN;
(2)猜想線段CD與DE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西省)我省某蘋果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費(fèi)送貨.

方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.

(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量xkg)之間的函數(shù)表達(dá)式;

(2)求購買量x在什么范圍時(shí),選用方案A比方案B付款少;

(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

同步練習(xí)冊答案