【題目】問題原型:如圖①,在銳角△ABC中,∠ABC=45°,AD⊥BC于點D,在AD上取點E,使DE=CD,連結(jié)BE.求證:BE=AC.
問題拓展:如圖②,在問題原型的條件下,F(xiàn)為BC的中點,連結(jié)EF并延長至點M,使FM=EF,連結(jié)CM.
(1)判斷線段AC與CM的大小關(guān)系,并說明理由.
(2)若AC=,直接寫出A、M兩點之間的距離.
【答案】問題原型:見解析; 問題拓展:(1)AC=CM,理由見解析;(2)AM=.
【解析】
根據(jù)題意證出△BDE≌△ADC即可得出答案;
證出△BEF≌△CMF即可得出答案;
(2)連接AM,求出∠ACM=90°,即可求出A
問題原型:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠ABC=45°,
∴∠BAD=45°,
∴∠ABC=∠BAD,
∴AD=BD,
在△BDE和△ADC中,
∵,
∴△BDE≌△ADC(SAS),
∴BE=AC,
問題拓展:(1)AC=CM,理由:
∵點F是BC中點,
∴BF=CF,
在△BEF和△CMF中,
∵,
∴△BEF≌△CMF(SAS),
∴BE=CM,
由(1)知,BE=AC,
∴AC=CM;
(2)如圖②,
連接AM,由(1)知,△BDE≌△ADC,
∴∠BED=∠ACD,
由(2)知,△BEF≌△CMF,
∴∠EBF=∠BCM,
∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,
∵AC=CM,
∴AM=AC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(-1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;(其中A1、B1、C1分別是A、B、C的對應(yīng)點,不寫畫法.)
(2)寫出點A1、B1、C1的坐標;
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標平面內(nèi),小明站在點A(﹣10,0)處觀察y軸,眼睛距地面1.5米,他的前方5米處有一堵墻DC,若墻高DC=2米,則小明在y軸上的盲區(qū)(即OE的長度)為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)分別求出安全意識為“淡薄”的學生占被調(diào)查學生總數(shù)的百分比、安全意識為“很強”的學生所在扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.
(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結(jié)果.
(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC= °,∠DEC= °;點D從B向C運動時,∠BDA逐漸變 (填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=10,D為BC邊上的中點,BD=6,連接AD.
(1)尺規(guī)作圖:作AC邊的中垂線交AD于點P;(保留作圖痕跡,不要求寫作法和證明)
(2)連接CP,求△DPC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接全市體育中考,某中學對全校初三男生進行了立定跳遠項目測試,并從參加測試的名男生中隨機抽取了部分男生的測試成績(單位:米,精確到米)作為樣本進行分析,繪制了如圖所示的頻率分布直方圖(每組含最低值,不含最高值).已知圖中從左到右每個小長方形的高的比依次為,其中的頻數(shù)為,請根據(jù)有關(guān)信息解答下列問題:
填空:這次調(diào)查的樣本容量為________,這一小組的頻率為________;
請指出樣本成績的中位數(shù)落在哪一小組內(nèi),并說明理由;
樣本中男生立定跳遠的人均成績不低于多少米;
請估計該校初三男生立定跳遠成績在米以上(包括米)的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.
(1)當30≤x≤60時,求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;
(3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com