【題目】小紅星期天從家里出發(fā)騎車去舅舅家做客,當(dāng)她騎了一段路時,想起要買個禮物送給表弟,于是又折回到剛經(jīng)過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,以下是她本次去舅舅家所用的時間與路程的關(guān)系式示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小紅家到舅舅家的路程是______米,小紅在商店停留了______分鐘;
(2)在整個去舅舅家的途中哪個時間段小紅騎車速度最快,最快的速度是多少米/分
(3)本次去舅舅家的行程中,小紅一共行駛了多少米?一共用了多少分鐘?
【答案】(1)1500,4;(2)小紅在12﹣14分鐘最快,速度為450米/分;(3)小紅共行駛了2700米,共用了14分鐘.
【解析】
(1)根據(jù)圖象,路程的最大值即為小紅家到舅舅家的路程;讀圖,對應(yīng)題意找到其在商店停留的時間段,進(jìn)而可得其在書店停留的時間;
(2)分析圖象,找函數(shù)變化最快的一段,可得小明騎車速度最快的時間段,進(jìn)而可得其速度;
(3)分開始行駛的路程,折回商店行駛的路程以及從商店到舅舅家行駛的路程三段相加即可求得小紅一共行駛路程;讀圖即可求得本次去舅舅家的行程中,小紅一共用的時間.
解:(1)根據(jù)圖象舅舅家縱坐標(biāo)為1500,小紅家的縱坐標(biāo)為0,故小紅家到舅舅家的路程是1500米;據(jù)題意,小紅在商店停留的時間為從8分到12分,故小紅在商店停留了4分鐘.
故答案為:1500,4;
(2)根據(jù)圖象,12≤x≤14時,直線最陡,
故小紅在12﹣14分鐘最快,速度為=450米/分.
(3)讀圖可得:小紅共行駛了1200+600+900=2700米,共用了14分鐘.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲學(xué)校到乙學(xué)校有A1、A2、A3三條線路,從乙學(xué)校到丙學(xué)校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學(xué)校到丙學(xué)校的線路中所有可能出現(xiàn)的結(jié)果;
(2)小張任意走了一條從甲學(xué)校到丙學(xué)校的線路,求小張恰好經(jīng)過了B1線路的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)E和點(diǎn)F分別在直線AB和CD上,EL和FG分別平分∠BEF和∠EFC,EL∥FG.
(1)求證:AB∥CD;
(2)如圖,點(diǎn)M為FD上一點(diǎn),∠BEM,∠EFD的角平分線EH,FH相交于點(diǎn)H,若∠H=∠FEM+15°,延長HE交FG于G點(diǎn),求∠G的度數(shù);
(3)如圖,點(diǎn)N在直線AB和直線CD之間,且EN⊥FN,點(diǎn)P為直線AB上的點(diǎn),若∠EPF,∠PFN的角平分級交于點(diǎn)Q,設(shè)∠BEN=α,直接寫出∠PQF的大小為(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=60°,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以O(shè)A為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求∠CAD的度數(shù);
(2)若OA = 2,求陰影部分的面積(結(jié)果保留π).
【答案】(1)∠CAD的度數(shù)為30°;
(2)陰影部分的面積為.
【解析】試題分析:(1)連接OD.由切線的性質(zhì)可知OD⊥BC,從而可證明AC∥OD,由平行線的性質(zhì)和等腰三角形的性質(zhì)可證明∠CAD=∠OAD;(2)連接OE,ED、OD.先證明ED∥AO,然后依據(jù)同底等高的兩個三角形的面積相等可知S△AED=S△EDO,于是將陰影部分的面積可轉(zhuǎn)化為扇形EOD的面積求解即可.
試題解析:(1)連接OD,
∵BC是⊙O的切線,D為切點(diǎn),
∴OD⊥BC.
又∵AC⊥BC,
∴OD∥AC,
∴∠ADO=∠CAD.
又∵OD=OA,
∴∠ADO=∠OAD,
∴∠CAD=∠OAD=30°.
(2)連接OE,ED.
∵∠BAC=60°,OE=OA,
∴△OAE為等邊三角形,
∴∠AOE=60°,
∴∠ADE=30°.
又∵,
∴∠ADE=∠OAD,
∴ED∥AO,
∴
∴陰影部分的面積 = .
【題型】解答題
【結(jié)束】
6
【題目】如圖是由兩個長方體組合而成的一個立體圖形的三視圖,根據(jù)圖中所標(biāo)尺寸(單位:mm),求這個立體圖形的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)為直線上一點(diǎn),直線過點(diǎn)C.
求m和b的值;
直線與x軸交于點(diǎn)D,動點(diǎn)P從點(diǎn)D開始以每秒1個單位的速度向x軸負(fù)方向運(yùn)動設(shè)點(diǎn)P的運(yùn)動時間為t秒.
①若點(diǎn)P在線段DA上,且的面積為10,求t的值;
②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6.點(diǎn)P從點(diǎn)A出發(fā),沿折現(xiàn)AB—BC向終點(diǎn)C運(yùn)動,在AB上以每秒5個單位長度的速度運(yùn)動,在BC上以每秒3個單位長度的速度運(yùn)動.點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個單位長度的速度運(yùn)動.點(diǎn)P、Q兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)P停止時,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動的時間為t秒.
(1)求線段AQ的長.(用含t的代數(shù)式表示)
(2)當(dāng)PQ與△ABC的一邊平行時,求t的值
(3)如圖②,過點(diǎn)P作PE⊥AC于點(diǎn)E,以PE、QE為鄰邊作矩形PEQF,點(diǎn)D為AC的中點(diǎn),連結(jié)DF.直接寫出DF將矩形PEQF分成兩部分的面積比為1:2時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于長為半徑畫弧,兩弧交于一點(diǎn)P,連接AP并延長交BC于點(diǎn)E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點(diǎn)O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com