【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
【答案】(1)證明見解析;(2)BE+CF>EF.理由見解析.
【解析】試題分析:(1)先利用ASA判定△BGD≌△CFD,從而得出BG=CF;
(2)再利用全等的性質(zhì)可得GD=FD,再有DE⊥GF,從而得出EG=EF,兩邊和大于第三邊從而得出BE+CF>EF.
試題解析:(1)∵BG∥AC,
∴∠DBG=∠DCF.
∵D為BC的中點(diǎn),
∴BD=CD
又∵∠BDG=∠CDF,
在△BGD與△CFD中,
∵
∴△BGD≌△CFD(ASA).
∴BG=CF.
(2)BE+CF>EF.
∵△BGD≌△CFD,
∴GD=FD,BG=CF.
又∵DE⊥FG,
∴EG=EF(垂直平分線到線段端點(diǎn)的距離相等).
∴在△EBG中,BE+BG>EG,
即BE+CF>EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1<y2 , 請直接寫出n的取值范圍;
(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個動點(diǎn),當(dāng)﹣1<p<2時,點(diǎn)M關(guān)于y軸的對稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,由若干個完全相同的棱長為 10 cm 的小正方體堆成一個幾何體,如圖 所示.
(1)這個幾何體由多少個小正方體組成?請畫出這個幾何體的三視圖.
(2)如果在這個幾何體的表面(不包括底面)噴上黃色的漆,則在所有的小正方體中,有多少個只有一個面是黃色?有多少個只有兩個面是黃色?有多少個只有三個面是黃色?
(3)假設(shè)現(xiàn)在你手里還有一些相同的小正方體,保持這個幾何體的主視圖、俯視圖形狀 不變,最多可以再添加幾個小正方體?這時如果要重新給這個幾何體表面(不包括底面) 噴上紅色的漆,需要噴漆的面積比原幾何體增加了還是減少了?增加或減少的面積是 多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD按如下順序折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③),沿GH折疊,使點(diǎn)C落在DH上的C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′,GH(如圖⑥).
(1)求圖②中∠BCB′=______度;
(2)圖⑥中的△GCC′是_______三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司向甲、乙兩所中學(xué)送水,每次送往甲中學(xué)7600升,乙中學(xué)4000升.已知人均送水量相同,甲中學(xué)師生人數(shù)是乙中學(xué)的2倍少20人.
(1)求這兩所中學(xué)師生人數(shù)分別是多少;
(2)若送瓶裝水,價格為1元/升;若用消防車送飲用水,不需購買,但需配送水塔,容量500升的水塔售價為520元/個,其他費(fèi)用不計.請問這次乙中學(xué)用瓶裝水花費(fèi)少還是飲用消防車送水花費(fèi)少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形AOBC中,對角線交于點(diǎn)E,雙曲線y=(k>0)經(jīng)過A、E兩點(diǎn), 若平行四邊形AOBC的面積為30,則k=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=6,求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。
現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com