【題目】對于二次函數(shù),有下列說法:

①如果=2,則有最小值-1; ②如果當的增大而減小,則=1;

③如果將它的圖象向左平移3個單位后的函數(shù)的最小值是-9,則;

④如果當=1時的函數(shù)值與=2015時的函數(shù)值相等,則當=2016時的函數(shù)值為3.其中正確的說法是_____________.(把你認為正確的結論的序號都填上)

【答案】①③④

【解析】m=2時,二次函數(shù)為y=x2-4x+3=x-22-1,
a=1>0
x=2時,y有最小值為-1;故正確;
如果當x≤1yx的增大而減小,則-

錯誤;
y=x2-2mx+3=x-m2-m2+3
將它的圖象向左平移3個單位后的函數(shù):y=x-m+32-m2+3,
-m2+3=-9m=±2,

m>0
m=2,故正確;
由當x=1時的函數(shù)值與x=2015時的函數(shù)值相等得:12-2m+3=20152-4030m+3,m=1008,
x=2016時,y=20162-2×2016×1008+3=3,故正確;
故答案為:①③④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校組織八年級800名學生參加漢字聽寫大賽為了解學生整體聽寫能力,從中抽取部分學生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計分析,得到如下所示的模數(shù)分布表:

分數(shù)段

50.560.5

60.570.5

70.580.5

80.590.5

90.5100.5

頻數(shù)

16

30

50

m

24

所占百分比

8%

15%

25%

40%

n

請根據(jù)尚未完成的表格,解答下列問題:

1)本次抽樣調(diào)查的樣本容量為  ,表中m  n= 

2)補全圖中所示的頻數(shù)分布直方圖;

3)若成績超過80分為優(yōu)秀,則該校八年級學生中漢字聽寫能力優(yōu)秀的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示. 設點A,B,C所對應數(shù)的和是p.

(1)若以B為原點,則點A,C所對應的數(shù)為 、 ,p的值為 若以C為原點,p 的值為 ;

(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠BED=61°,∠ABE的平分線與∠CDE的平分線交于點F,則∠DFB=(  )

A. 149° B. 149.5° C. 150° D. 150.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題:(1)_______;(2)________;

(3)_______;(4)_______

(5)________;(6)________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上,

(1)B點關于y軸的對稱點坐標為   ;

(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;

(3)以原點O為對稱中心,畫出△ AOB與關于原點對稱的△ A2 O B2;

(4)以原點O為旋轉(zhuǎn)中心,畫出把△AOB順時針旋轉(zhuǎn)90°的圖形△A3 O B3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△DBE均為等腰三角形,點A,D,E在同一直線上,連接CE

(1)如圖1,若∠BAC=∠BCA=∠BDE=∠BED=55°

①求證:AD=CE;

②求∠AEC的度數(shù).

(2)如圖2,若∠ABC=∠DBE=120°,BM△BDEDE邊上的高,CN為△ACEAE邊上的高,試證明:AE=

查看答案和解析>>

同步練習冊答案