【題目】矩形ABCD中,對(duì)角線ACBD交于點(diǎn)O,AEBDE,∠CAE10°,則∠ADB_____

【答案】50°40°

【解析】

分兩種情況,求出∠AOD80°,由矩形的性質(zhì)得出OAOD,由等腰三角形的性質(zhì)和矩形的性質(zhì)即可得出答案.

解:①ABAD時(shí),如圖1所示:

AEBD,

∴∠AOD90°﹣∠CAE90°10°80°,

∵四邊形ABCD是矩形,

∴∠BAD90°OAOCAC,OBODBDACBD,

OAOD,

∴∠ADB=∠OAD180°80°)=50°;

ADAB時(shí),如圖2所示:

同①得:OAOB,

∴∠ABD=∠OAB180°80°)=50°

∴∠ADB90°﹣∠ABD40°

綜上所述,∠ADB50°40°;

故答案為:50°40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過(guò)圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC90°,對(duì)角線AC、BD交于點(diǎn)OAOCO,CDBD,如果CD3,BC5,那么AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng).現(xiàn)隨機(jī)抽查了部分學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.

抽取的學(xué)生最喜歡體育活動(dòng)的條形統(tǒng)計(jì)圖

抽取的學(xué)生最喜歡體育活動(dòng)的扇形統(tǒng)計(jì)圖

請(qǐng)結(jié)合以上信息解答下列問(wèn)題:

1)在這次調(diào)查中一共抽查了_____學(xué)生,扇形統(tǒng)計(jì)圖中“乒乓球”所對(duì)應(yīng)的圓心角為_____度,并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)己知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校最喜愛跑步的學(xué)生人數(shù);

3)若在“排球、足球、跑步、乒乓球”四個(gè)活動(dòng)項(xiàng)目任選兩項(xiàng)設(shè)立課外興趣小組,請(qǐng)用列表法或畫樹狀圖的方法求恰好選中“排球、乒乓球”這兩項(xiàng)活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.

(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擁有一條生產(chǎn)某品牌酸奶的生產(chǎn)線,已知該酸奶銷售額為4800元時(shí)的銷量比銷售額為800元時(shí)的銷量要多500瓶.現(xiàn)接到一單生產(chǎn)任務(wù),需要在16天內(nèi)完成,為按時(shí)完成任務(wù),該企業(yè)招收了新工人甲,設(shè)甲第x天(x為整數(shù))生產(chǎn)的酸奶數(shù)量為y瓶,yx滿足下列關(guān)系式:y

1)求每瓶酸奶的售價(jià)為多少元?

2)如圖,設(shè)第x天每瓶酸奶的成本是p元,已知px之間的關(guān)系可以用圖中的函數(shù)圖象來(lái)刻畫.若甲第x天創(chuàng)造的利潤(rùn)為w元,請(qǐng)直接寫出wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=售價(jià)﹣成本)

3)設(shè)(2)小題中第m天利潤(rùn)達(dá)到最大值,若要使第(m+1)天的利潤(rùn)比第m天的利潤(rùn)至少多50元,則第(m+1)天每瓶酸奶至少應(yīng)提價(jià)幾元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,AB、AC為圓O的弦,連接CO并延長(zhǎng),交AB于點(diǎn)D,且∠ADC=2C;

1)如圖1,求證:AD=CO;

2)如圖2,取弧BC上一點(diǎn)E,連接EB、EC、ED,且∠EDA=ECA,延長(zhǎng)EB至點(diǎn)F,連接FD,若∠EDF-F=60°,求∠BDF的度數(shù);

3)如圖3,在(2)的條件下,若CD=10,,求AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠色出行是對(duì)環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小

組為了了解“共享單車”的使用情況,對(duì)本校教師在36日至310日使用單車的情況進(jìn)行了問(wèn)卷調(diào)查,

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

137日使用“共享單車”的教師人數(shù)為人,并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)不同品牌的“共享單車”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對(duì)有過(guò)使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究.

如圖1,拋物線yx2x2x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線交y軸于點(diǎn)E0,2).

1)求A,BC三點(diǎn)的坐標(biāo)及直線BE的解析式.

2)如圖2,過(guò)點(diǎn)ABE的平行線交拋物線于點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連接PA,PD,求OAPD面積的最大值.

3)若(2)中的點(diǎn)P為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使得以A,D,PQ為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案