【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D,E運(yùn)動的時間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連結(jié)DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(2)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
【答案】(1)能,理由詳見解析;(2)當(dāng)t=或12秒時,△DEF為直角三角形
【解析】
(1)能.首先證明四邊形AEFD為平行四邊形,當(dāng)AE=AD時,四邊形AEFD為菱形,即60-4t=2t,解方程即可解決問題;
(2)分三種情形討論①當(dāng)∠DEF=90°時,②當(dāng)∠EDF=90°時.③當(dāng)∠EFD=90°,分別求解即可
解:(1)能.
理由:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四邊形AEFD為平行四邊形,
當(dāng)AE=AD時,四邊形AEFD為菱形,
即60-4t=2t,解得t=10.
∴當(dāng)t=10秒時,四邊形AEFD為菱形;
(2)①當(dāng)∠DEF=90°時,由(1)知四邊形AEFD為平行四邊形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,又AD=60-4t,即60-4t=t,
解得t=12;
②當(dāng)∠EDF=90°時,四邊形EBFD為矩形,
在Rt△AED中∠A=60°,則∠ADE=30°,
∴AD=2AE,
即60-4t=4t,解得t=;
③若∠EFD=90°,則E與B重合,
D與A重合,此種情況不存在.
綜上所述,當(dāng)t=或12秒時,△DEF為直角三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=ax+bx+c的圖象先向右平移3個單位,再向下平移2個單位,所得的圖象的解析式是y=x-3x+5,則a+b+c=__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,S△ABC=4,點(diǎn)P、Q、K分別為線段AB、BC、AC上任意一點(diǎn),則PK+QK的最小值為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計(jì)轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大;⑤當(dāng)函數(shù)值y<0時,自變量x的取值范圍是x<-1或x>5.
其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子AC長2.5米,斜靠在一面墻上,梯子底端離墻0.7米.
(1)這個梯子的頂端距地面有多高?
(2)如果梯子的頂端下滑了0.4米到A′,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y= x+2與x軸,y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)y= (x>0)的圖象相交于點(diǎn)C(2,3).點(diǎn)P是反比例函數(shù)圖象上一點(diǎn),作PE垂直x軸于E,若以P、O、E為頂點(diǎn)的三角形與△AOB相似,則點(diǎn)P的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過點(diǎn)A,BD⊥MN于點(diǎn)D,CE⊥MN于點(diǎn)E.
(1)試判斷線段DE、BD、CE之間的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)直線MN運(yùn)動到如圖2所示位置時,其余條件不變,判斷線段DE、BD、CE之間的數(shù)量關(guān)系。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com