20.4的平方根是(  )
A.-2B.2C.±2D.沒有平方根

分析 根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x2=a,則x就是a的平方根,由此即可解決問題.

解答 解:∵(±2)2=4,
∴4的平方根是±2.
故選:C.

點(diǎn)評 本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示-11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個長度單位.動點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)O運(yùn)動到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)B運(yùn)動到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴?fù)原速.設(shè)運(yùn)動的時間為t秒.

問:(1)動點(diǎn)P從點(diǎn)A運(yùn)動至C點(diǎn)需要多少時間?
(2)P、Q兩點(diǎn)相遇時,求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.把下面的直線補(bǔ)充成一條數(shù)軸,然后在數(shù)軸上標(biāo)出下列各數(shù):-3,+1,-1.5,$\frac{5}{2}$,并用“<”號把這些數(shù)連接起來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.分解因式
(1)x2(x-2)-16(x-2)
(2)2x3-8x2+8x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.某機(jī)加工車間共有26名工人,現(xiàn)要加工2100個A零件,1200個B零件,已知每人每天加工A零件30個或B零件20個,問怎樣分工才能確保同時完成兩種零件的加工任務(wù)(每人只能加工一種零件)?設(shè)安排x人加工A零件,由題意列方程得( 。
A.$\frac{2100}{30x}$=$\frac{1200}{20(26-x)}$B.$\frac{2100}{x}$×30=$\frac{1200}{26-x}$×20
C.$\frac{2100}{20x}$=$\frac{1200}{30(26-x)}$D.$\frac{2100}{x}$=$\frac{1200}{26-x}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知:如圖所示,DE⊥BC,AB⊥BC,DE平分∠BDC,試判斷∠A與∠3的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.在拋物線y=ax2-2ax-3a上有A(-0.5,y1)、B(2,y2)和C(3,y3)三點(diǎn),若拋物線與y軸的交點(diǎn)在正半軸上,則y1、y2和y3的大小關(guān)系為( 。
A.y3<y1<y2B.y3<y2<y1C.y2<y1<y3D.y1<y2<y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.某商店銷售一種進(jìn)價為50元/件的商品,當(dāng)售價為60元/件時,一天可賣出200件;經(jīng)調(diào)查發(fā)現(xiàn),如果商品的單價每上漲1元,一天就會少賣出10件.設(shè)商品的售價上漲了x元/件(x是正整數(shù)),銷售該商品一天的利潤為y元,那么y與x的函數(shù)關(guān)系的表達(dá)式為y=-10x2+100x+2000.(不寫出x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示,直角三角形AOB的周長為100,在其內(nèi)部有6個小直角三角形,則這6個小直角三角形的周長之和為100.

查看答案和解析>>

同步練習(xí)冊答案