【題目】如圖1,在平面直角坐標(biāo)系xOy中,點M為拋物線y=﹣x2+2nx﹣n2+2n的頂點,過點(0,4)作x軸的平行線,交拋物線于點P、Q(點P在Q的左側(cè)),PQ=4.
(1)求拋物線的函數(shù)關(guān)系式,并寫出點P的坐標(biāo);
(2)小麗發(fā)現(xiàn):將拋物線y=﹣x2+2nx﹣n2+2n繞著點P旋轉(zhuǎn)180°,所得新拋物線的頂點恰為坐標(biāo)原點O,你認(rèn)為正確嗎?請說明理由;
(3)如圖2,已知點A(1,0),以PA為邊作矩形PABC(點P、A、B、C按順時針的方向排列), .
寫出C點的坐標(biāo):C( , )(坐標(biāo)用含有t的代數(shù)式表示);
(4)若點C在題(2)中旋轉(zhuǎn)后的新拋物線上,求t的值.
【答案】
(1)
解:∵拋物線y=﹣x2+2nx﹣n2+2n過點P,P點的縱坐標(biāo)為4,
∴4=﹣x2+2nx﹣n2+2n
解得:x1=n+ ,x2=n﹣ ,
∵PQ=x1﹣x2=4,
∴2 =4,
解得:n=4,
∴拋物線的函數(shù)關(guān)系式為:y=﹣x2+8x﹣8,
∴4=﹣x2+8x﹣8,
解得:x=2或x=6,
∴P(2,4).
(2)
解:正確;
∵P(2,4),PQ=4,
∴Q繞著點P旋轉(zhuǎn)180°后的對稱點為Q′(﹣2,4),
∴P與Q′正好關(guān)于y軸對稱,
∴所得新拋物線的對稱軸是y軸,
∵拋物線y=﹣x2+8x﹣8=﹣(x﹣4)2+8,
∴拋物線的頂點M(4,8),
∴頂點M到直線PQ的距離為4,
∴所得新拋物線頂點到直線PQ的距離為4,
∴所得新拋物線頂點應(yīng)為坐標(biāo)原點.
(3)﹣4t+2;4+t
(4)
解:由(1)可知,旋轉(zhuǎn)后的新拋物線是y=ax2,
∵新拋物線是y=ax2過P(2,4),
∴4=4a,
∴a=1,
∴旋轉(zhuǎn)后的新拋物線是y=x2,
∵C(﹣4t+2,4+t)在拋物線y=x2上,
∴4+t=(﹣4t+2)2,
解得:t=0(舍去)或t= ,
∴t= .
【解析】解:(3)如圖2,過P作x軸的垂線,交x軸于M,過C作CN⊥MN于N,
∵ ,
∴ = ,
∵△APM∽△PCN,
∴ = = = ,
∵AM=2﹣1=1,PM=4,
∴PN=t,CN=4t,
∴MN=4+t,
∴C(﹣4t+2,4+t),
【考點精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的邊長2,∠A=60°,點E、F分別在邊AB、AD上,若將△AEF沿直線EF折疊,使得點A恰好落在CD邊的中點G處,則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于點C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為2cm,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點P在射線BC上(異于點B、C),直線AP與對角線BD及射線DC分別交于點F、Q
(1)若BP= ,求∠BAP的度數(shù);
(2)若點P在線段BC上,過點F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時,求PC的長;
(3)以PQ為直徑作⊙M. ①判斷FC和⊙M的位置關(guān)系,并說明理由;
②當(dāng)直線BD與⊙M相切時,直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一只不透明的布袋中裝有紅球、黃球各若干個,這些球除顏色外都相同,充分搖勻.
(1)若布袋中有3個紅球,1個黃球.從布袋中一次摸出2個球,計算“摸出的球恰是一紅一黃”的概率(用“畫樹狀圖”或“列表”的方法寫出計算過程);
(2)若布袋中有3個紅球,x個黃球. 請寫出一個x的值 , 使得事件“從布袋中一次摸出4個球,都是黃球”是不可能的事件;
(3)若布袋中有3個紅球,4個黃球. 我們知道:“從袋中一次摸出4個球,至少有一個黃球”為必然事件.
請你仿照這個表述,設(shè)計一個必然事件: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1 , a2 , …,a2014是從1,0,﹣1這三個數(shù)中取值的一列數(shù),若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,則a1 , a2 , …,a2014中為0的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某店因為經(jīng)營不善欠下38400元的無息貸款的債務(wù),想轉(zhuǎn)行經(jīng)營服裝專賣店又缺少資金.“中國夢想秀”欄目組決定借給該店30000元資金,并約定利用經(jīng)營的利潤償還債務(wù)(所有債務(wù)均不計利息).已知該店代理的品牌服裝的進(jìn)價為每件40元,該品牌服裝日銷售量y(件)與銷售價x(元/件)之間的關(guān)系可用圖中的一條折線(實線)來表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費用為106元(不包含債務(wù)).
(1)求日銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還債務(wù),當(dāng)某天的銷售價為48元/件時,當(dāng)天正好收支平衡(收人=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店最早需要多少天能還清所有債務(wù),此時每件服裝的價格應(yīng)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com