【題目】如圖,在平面直角坐標(biāo)系中,OABCD的對(duì)稱中心,點(diǎn)A的坐標(biāo)為(-2,-2)AB=5,AB//x軸,反比例函數(shù)的圖象經(jīng)過點(diǎn)D,將ABCD沿y軸向下平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C'落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為( )

A.24B.20C.18D.14

【答案】B

【解析】

根據(jù)OABCD的對(duì)稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,ABx軸,可求點(diǎn)BD、C的坐標(biāo),進(jìn)而求出反比例函數(shù)的關(guān)系式,由平移可求出點(diǎn)C′的坐標(biāo),知道平移的距離,即平行四邊形的底,再根據(jù)點(diǎn)的坐標(biāo),可求出平行四邊形的高,最后根據(jù)面積公式求出結(jié)果.

解:∵點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,ABx軸,

B3,-2),

OABCD的對(duì)稱中心,

D-32),C22),

D點(diǎn)坐標(biāo)代入反比例函數(shù)的關(guān)系式得,

ABCD沿y軸向下平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在反比例函數(shù)的圖象上,

平移后,如圖, 當(dāng)x=2時(shí),

∴點(diǎn)C′2,-3),

CC′=2--3=5,

上的高為:

∴平行四邊形ACC′A′的面積為5×4=20,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達(dá)式一利用函數(shù)圖象研究其性質(zhì)一運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程,在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象,同時(shí)我們也學(xué)習(xí)了絕對(duì)值的意義|a|,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y|kx1|+b,當(dāng)x1時(shí),y=﹣2;當(dāng)x0時(shí),y=﹣1

1)求這個(gè)函數(shù)的表達(dá)式;

2)請(qǐng)你結(jié)合以下表格在坐標(biāo)系中畫出該函數(shù)的圖象.

3)觀察這個(gè)函效圖象,請(qǐng)寫出該函數(shù)的兩條性質(zhì);

4)已知函數(shù)y=﹣x0)的圖象如圖所示,請(qǐng)結(jié)合圖象寫出|kx1|bx0)的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A(0,2),B(m, m-2),則AB+ OB的最小值是(

A.B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,沿著直線折疊,使點(diǎn)落在處,,,則的長(zhǎng)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(2,-6),且與反比例函數(shù)y=-的圖象交于點(diǎn)B(a,4)

(1)求一次函數(shù)的解析式;

(2)將直線AB向上平移10個(gè)單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,AB=26,以AB為直徑的⊙OAC邊于點(diǎn)D,點(diǎn)EBC上,連結(jié)BDDE,∠CDE=ABD

(1)證明:DE是⊙O的切線;

(2)sinCDE=,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,APB=30°,圓心在PB上的O的半徑為1cm,OP=3cm,若O沿BP方向平移,當(dāng)O與PA相切時(shí),圓心O平移的距離為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交點(diǎn),拋物線兩點(diǎn),與軸交于另一點(diǎn)


1)求拋物線的解析式及點(diǎn)的坐標(biāo);

2)在直線上方的拋物線上是否存在點(diǎn),使的交點(diǎn)恰好為的中點(diǎn)?如果存在,求出點(diǎn)的坐標(biāo),如果不存在,說明理由.

3)若點(diǎn)在拋物線上且橫坐標(biāo)為,點(diǎn)是拋物線對(duì)稱軸上一點(diǎn),在拋物線上存在一點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)為網(wǎng)格線的交點(diǎn)).

1)畫出四邊形ABCD關(guān)于x軸成軸對(duì)稱的四邊形A1B1C1D1;

2)以O為位似中心,在第三象限畫出四邊形ABCD的位似四邊形A2B2C2D2,且位似比為1;

3)在第一象限內(nèi)找出格點(diǎn)P,使∠DCP=CDP,并寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案