【題目】如圖,已知點(diǎn)A、B分別在反比例函數(shù)yx0),y=﹣x0)的圖象上,且OAOB,則的值為_____

【答案】

【解析】

ACy軸于C,BDy軸于D,如圖,利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和三角形面積公式得到SOAC,SOBD,再證明RtAOCRtOBD,然后利用相似三角形的性質(zhì)得到的值.

解:作ACy軸于C,BDy軸于D,如圖,

∵點(diǎn)AB分別在反比例函數(shù)yx0),y=﹣x0)的圖象上,

SOAC×1,SOBD×|5|

OAOB,

∴∠AOB90°

∴∠AOC+BOD90°,

∴∠AOC=∠DBO,

RtAOCRtOBD,

=(2,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察等式:1+2+22231;1+2+22+232411+2+22+23+24251;若1+2+22+…+292101m,則用含 m 的式子表示 211+212 + …+218+219 的結(jié)果是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBDE

1)若BCBD,,AD15,求△ABD的周長(zhǎng).

2)若∠DBC45°,對(duì)角線ACBD交于點(diǎn)O,FAE上一點(diǎn),且AF2EO,求證:CFAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+6x軸,y軸分別交AB兩點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)是點(diǎn)C,動(dòng)點(diǎn)EA出發(fā)以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)C,點(diǎn)D在線段OB上滿足tanDEO2,過E點(diǎn)作EFAB于點(diǎn)F,點(diǎn)A關(guān)于點(diǎn)F的對(duì)稱點(diǎn)為點(diǎn)G,以DG為直徑作M,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t秒;

1)當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng),t  時(shí),△AEF與△EDO的相似比為1

2)當(dāng)My軸相切時(shí),求t的值;

3)若直線EGM交于點(diǎn)N,是否存在t使NG,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AMBN,CBN上一點(diǎn), BD平分∠ABN且過AC的中點(diǎn)O,交AM于點(diǎn)D,DEBD,交BN于點(diǎn)E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tanAOC=,反比例函數(shù)y=﹣的圖象經(jīng)過點(diǎn)C,與AB交與點(diǎn)D,則COD的面積的值等于_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為3,∠BAD60°,點(diǎn)E、F在對(duì)角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),

求一次函數(shù)的表達(dá)式;

若該商場(chǎng)獲得利潤(rùn)為元,試寫出利潤(rùn)與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】口袋中有只乒乓球,其中只是紅球,另只是黃球,它們的大小都一樣,現(xiàn)從中任意摸出只球,

1)恰為一紅一黃的概率是多少?

2)兩只均為紅球的概率是多少?

3)兩只均為黃球的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案