【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為( ,1),下列結(jié)論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結(jié)論的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:根據(jù)圖象可知: ①a<0,c>0
∴ac<0,正確;
②∵頂點(diǎn)坐標(biāo)橫坐標(biāo)等于 ,
= ,
∴a+b=0正確;
③∵頂點(diǎn)坐標(biāo)縱坐標(biāo)為1,
=1;
∴4ac﹣b2=4a,正確;
④當(dāng)x=1時(shí),y=a+b+c>0,錯(cuò)誤.
正確的有3個(gè).
故選C.
【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知反比例函數(shù)y= (k常數(shù),k≠1).
(1)若點(diǎn)A(2,1)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=9,試判斷點(diǎn)B(﹣ ,﹣16)是否在這個(gè)函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=6,BC=4,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AEF,使得AF∥BC,延長BC交AE于點(diǎn)D,則線段CD的長為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若原方程的兩個(gè)實(shí)數(shù)根為x1、x2 , 且滿足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0),B(﹣1,1),C(﹣3,3),將△ABC繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)90°后得到△A1BC1
(1)畫出△A1BC1 , 寫出點(diǎn)A1、C1的坐標(biāo);
(2)計(jì)算線段BA掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列四個(gè)圖案中,既是軸對稱圖形,又是中心對稱圖形是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C

(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案