【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于 .
【答案】
(1)證明:∵∠DAB=60°,AC平分∠DAB,
∴∠DAC=∠CAB=30°,
∴∠D+∠ACD=180°﹣30°=150°,
∵∠BCD=∠ACD+∠ACB=150°,
∴∠D=∠ACB,
∴△ADC∽△ACB.
∴AD:AC=AC:AB,
∴AC2=ABAD,
∴四邊形ABCD為“可分四邊形”;
(2)解:∵AC平分∠DAB,
∴∠DAC=∠BAC,
∵AC2=ABAD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB,
∵∠DCB=∠DAB,
∴∠DCB=∠DCA+∠ACB=2∠DAC,
∵∠DAC+∠D+∠ACB=180°,
∴∠DAC+2∠DAC=180°,
解得:∠DAC=60°,
∴∠DAB=120°;
(3)8
【解析】(3)∵四邊形ABCD為“可分四邊形”,AC=4,
∴ABAD=AC2=16,
當DA⊥DB時,△DAB的最大,最大面積為8,
所以答案是:8.
【考點精析】本題主要考查了勾股定理的概念和相似三角形的判定與性質(zhì)的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1,每個小格的頂點叫格點,以格點為頂點的三角形叫做格點三角形.
(1)格點△ABC的面積為;
(2)畫出格點△ABC繞點C順時針旋轉(zhuǎn)90°后的△A1B1C1 , 并求出在旋轉(zhuǎn)過程中,點B所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點F在ABCD的對角線AC上,過點F,B分別作AB,AC的平行線相交于點E,連接BF,∠ABF=∠FBC+∠FCB.
(1)求證:四邊形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE= ,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了豐富學生課余活動開展了一次“愛我云南,唱我云南”的歌詠比賽,共有18名同學入圍,他們的決賽成績?nèi)缦卤恚?/span>
成績(分) | 9.40 | 9.50 | 9.60 | 9.70 | 9.80 | 9.90 |
人數(shù) | 2 | 3 | 5 | 4 | 3 | 1 |
則入圍同學決賽成績的中位數(shù)和眾數(shù)分別是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】昨天早晨7點,小明乘車從家出發(fā),去西安參加中學生科技創(chuàng)新大賽,賽后,他當天按原路返回,如圖,是小明昨天出行的過程中,他距西安的距離y(千米)與他離家的時間x(時)之間的函數(shù)圖象.
根據(jù)下面圖象,回答下列問題:
(1)求線段AB所表示的函數(shù)關系式;
(2)已知昨天下午3點時,小明距西安112千米,求他何時到家?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,,是邊上一點,延長到點,使得,連接,過點作的垂線,交的垂直平分線于點,連接.
(1)如圖1,當點與點重合時,證明:;
(2)如圖2,當點不與,兩點重合時,(1)中的結(jié)論是否還成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如∠MON=30°、OP=6,點A、B分別在OM、ON上;(1)請在圖中畫出周長最小的△PAB(保留畫圖痕跡);(2)請求出(1)中△PAB的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com