【題目】如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.

(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù);
(2)猜想∠EOF與∠AOB的數(shù)量關系;
(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?

【答案】
(1)解:∵∠AOC=∠AOB+∠BOC,
∴∠AOC=90°+60°=150°.
∵OE平分∠AOC,
∴∠EOC=150°÷2=75°.
∵OF平分∠BOC,
∴∠COF=60°÷2=30°.
∵∠EOC=∠EOF+∠COF,
∴∠EOF=75°-30°=45°
(2)解:∵OE平分∠AOC,OF平分∠BOC.
∴∠COE= ∠AOC,∠COF= ∠BOC
∵∠AOB=∠AOC-∠BOC
∴∠EOF=∠COE-∠COF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB
(3)解:∵OE平分∠AOC,OF平分∠BOC,
∴∠COE= ∠AOC,∠COF= ∠BOC,
∴∠EOF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB.又∵∠AOB+∠EOF=156°,
∴∠EOF=52°
【解析】(1)首先求出∠AOC的度數(shù),再根據(jù)角平分線的性質(zhì)計算出∠EOC,∠BOF的度數(shù),然后根據(jù)角的和差關系即可算出∠EOF的度數(shù);
(2)根據(jù)角平分線的定義得出∠COE= ∠AOC,∠COF= ∠BOC ,又因∠AOB=∠AOC-∠BOC ,從而得出∠EOF=∠COE-∠COF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB ;
(3)根據(jù)角平分線的定義得出∠COE= ∠AOC,∠COF= ∠BOC ,根據(jù)角的和差得出∠EOF= ∠AOC- ∠BOC= (∠AOC-∠BOC)= ∠AOB.又∠AOB+∠EOF=156°,從而得出∠EOF=52° 。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一次數(shù)學測驗中,某小組七位同學的成績分別是:90,85,90,95,90,85,95.則這七個數(shù)據(jù)的眾數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出一種運算:對于函數(shù)y=xn,規(guī)定y′=nxn1.例如:若函數(shù)y=x4,則有y′=4x3.已知函數(shù)y=x3,則方程y′=12的解是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;

(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;

(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4

(1)求經(jīng)過A、B、C三點的拋物線的解析式;

(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a、bc是同一平面內(nèi)三條不重合的直線,則它們的交點可以有( 。

A. 1個或2個或3 B. 0個或1個或2個或3

C. 1個或2 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,直線l垂直底邊BC,現(xiàn)將直線l沿線段BC從B點勻速平移至C點,直線l與△ABC的邊相交于E、F兩點.設線段EF的長度為y,平移時間為t,則下圖中能較好反映y與t的函數(shù)關系的圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為(
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABD和等邊三角形CBD的邊長均為a,現(xiàn)把它們拼合起來,E是AD上異于A、D兩點的一動點,F(xiàn)是CD上一動點,滿足AE+CF=a.則△BEF的形狀如何?

查看答案和解析>>

同步練習冊答案