【題目】現(xiàn)有四張正面分別印有和四種圖案,并且其余完全相同的卡片,現(xiàn)將印有圖案的一面朝下,并打亂擺放順序,請用列表或畫樹狀圖的方法解決下列問題:
(1)現(xiàn)從中隨機抽取一張,記下圖案后放回,再從中隨機抽取一張卡片,求兩次摸到的卡片上印有圖案都是軸對稱圖形的概率;
(2)現(xiàn)從中隨機抽取-張,記下圖案后不放回,再從中隨機抽取一張卡片,求兩次摸到的卡片上印有圖案都是中心對稱圖形的概率.
【答案】(1);(2).
【解析】
(1)先判斷出是軸對稱圖形的字母,再畫出樹狀圖,得出所有可能的情況數(shù)和兩次摸出的都是軸對稱圖形的字母的情況數(shù),利用概率公式即可得答案;
(2)先判斷出是中心對稱圖形的字母,再畫出樹狀圖,得出所有可能的情況數(shù)和兩次摸出的都是中心對稱圖形的字母的情況數(shù),利用概率公式即可得答案.
(1)在A、F、N、O中,是軸對稱圖形的字母有A、O,
畫樹狀圖如下:
由樹狀圖可知,共有種可能出現(xiàn)的結果,并且它們都是等可能的,其中“兩張卡片圖案都是軸對稱”的有種情況,分別為:,
∴兩次摸到的卡片上印有圖案都是軸對稱圖形的概率為=.
(2)在A、F、N、O中,是中心對稱圖形的字母有N、O,
畫樹狀圖如下:
由樹狀圖可知,共有種可能出現(xiàn)的結果,并且它們都是等可能的,其中“兩張卡片圖案都是中心對稱”的有種情況,分別為,
∴兩次摸到的卡片上印有圖案都是中心對稱圖形概率為=.
科目:初中數(shù)學 來源: 題型:
【題目】某公司從2014年開始投入技術改進資金,經技術改進后,其產品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請你認真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預計生產成本每件比2016年降低多少萬元?
②若打算在2017年把每件產品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結果精確到0.01萬元).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:矩形ABCD,AB=2,BC=5,動點P從點B開始向點C運動,動點P速度為每秒1個單位,以AP為對稱軸,把△ABP折疊,所得△AB'P與矩形ABCD重疊部分面積為y,運動時間為t秒.
(1)當運動到第幾秒時點B'恰好落在AD上;
(2)求y關于t的關系式,以及t的取值范圍;
(3)在第幾秒時重疊部分面積是矩形ABCD面積的;
(4)連接PD,以PD為對稱軸,將△PCD作軸對稱變換,得到△PC'D,當t為何值時,點P、B'、C'在同一直線上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由邊長為1的木條組成的幾何圖案,觀察圖形規(guī)律,解決下列問題:
……….
(1)填空:第一個圖案由1個正方形組成,共用的木條根數(shù);
第二個圖案由4個正方形組成,共用的木條根數(shù);
第三個圖案由9個正方形組成,共用的木條根數(shù) ;
第四個圖案由16個正方形組成,共用的木條根數(shù) ;
(2)第個圖案由個正方形組成,共用木條根數(shù) (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,2),B(n,4)兩點,連接OA、OB.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)在直角坐標系中,是否存在一點P,使以P、A、O、B為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形OABC構成,長方形的長OA是12m,寬OC是4m.按照圖中所示的平面直角坐標系,拋物線可以用y=﹣x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m.那么兩排燈的水平距離最小是( )
A.2mB.4mC.mD.m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,把一個含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,繞B點轉動△FBE,在旋轉過程中,
(1)如圖1,當F點落在邊AD上時,求∠EDC的度數(shù);
(2)如圖2,設EF與邊AD交于點M,FE的延長線交DC于G,當AM=2時,求EG的長;
(3)如圖3,設EF與邊AD交于點N,當tan∠ECD=時,求△NED的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;
(3)如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com