【題目】在Rt△ABC中,∠A=90°,AC=AB=4,D,E分別是邊AB,AC的中點,若等腰Rt△ADE繞點A逆時針旋轉,得到等腰Rt△AD1E1,設旋轉角為α(0<α≤180°),記直線BD1與CE1的交點為P.
(1)如圖1,當α=90°時,線段BD1的長等于 ,線段CE1的長等于 ;(直接填寫結果)
(2)如圖2,當α=135°時,求證:BD1=CE1,且BD1⊥CE1.
【答案】(1)2; 2;(2)證明見解析.
【解析】試題分析:(1)利用等腰直角三角形的性質結合勾股定理分別得出BD1的長和CE1的長;
(2)根據旋轉的性質得出,∠D1AB=∠E1AC=135°,進而求出△D1AB≌△E1AC(SAS),即可得出答案.
試題解析:(1)∵∠A=90°,AC=AB=4,D,E分別是邊AB,AC的中點,
∴AE=AD=2,
∵等腰Rt△ADE繞點A逆時針旋轉,得到等腰Rt△AD1E1,設旋轉角為α(0<α≤180°),
∴當α=90°時,AE1=2,∠E1AE=90°,
∴BD1=,E1C=;
(2)證明:當α=135°時,如圖2,
∵Rt△AD1E是由Rt△ADE繞點A逆時針旋轉135°得到,
∴AD1=AE1,∠D1AB=∠E1AC=135°,
在△D1AB和△E1AC中
∵,
∴△D1AB≌△E1AC(SAS),
∴BD1=CE1,且∠D1BA=∠E1CA,
記直線BD1與AC交于點F,
∴∠BFA=∠CFP,
∴∠CPF=∠FAB=90°,
∴BD1⊥CE1.
科目:初中數學 來源: 題型:
【題目】如圖,現有一個轉盤被平均分成6等份,分別標有數字2、3、4、5、6、7這六個數字,轉動轉盤,當轉盤停止時,指針指向的數字即為轉出的數字,求:
(1)轉到數字10是______(從“不確定事件”“必然事件”“不可能事件”選一個填入);
(2)轉動轉盤,轉出的數字大于3的概率是______;
(3)現有兩張分別寫有3和4的卡片,要隨機轉動轉盤,轉盤停止后記下轉出的數字,與兩張卡片上的數字分別作為三條線段的長度.
①這三條線段能構成三角形的概率是多少?
②這三條線段能構成等腰三角形的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關于x軸的對稱圖形△A1B1C1 ;
(2)寫出點A1 , B1 , C1的坐標(直接寫答案), A1________ ,B1________ ,C1________;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A是反比例函數y=(k≠0)圖象上一點,AB⊥x軸于B點,一次函數y=ax+b(a≠0)的圖象交y軸于D(0,-2),交x軸于C點,并與反比例函數的圖象交于A,E兩點,連接OA,若△AOD的面積為4,且點C為OB中點.
(1)分別求雙曲線及直線AE的解析式;
(2)若點Q在雙曲線上,且S△QAB=4S△BAC,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合),我們定義:這樣的兩條拋物L1,L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.
(1)如圖2,已知拋物線L3:y=2x2-8x+4與y軸交于點C,試求出點C關于該拋物線對稱軸對稱的點D的坐標;
(2)請求出以點D為頂點的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x-m) 2+n的任意一條友好拋物線的解析式為y=a2 (x-h) 2+k,請寫出a1與a2的關系式,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=70°,將△ABC繞點A逆時針旋轉,得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'=______°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列推理過程,在括號中填寫理由.
如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.試說明:AC∥DF.
解:∵∠1=∠2(已知),∠1=∠3(______________),
∴∠2=∠3(___________________).
∴__∥__(__________________________________).
∴∠C=∠ABD (________________________________).
又∵∠C=∠D(____________),
∴∠D=∠ABD(等量代換)
∴AC∥DF(______________________________).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象經過點A(﹣3,6)、B(m,0)、C(3,0),并且m<3,D為拋物線的頂點.
(1)求b,c,m的值;
(2)設點P是線段OC上一點,點O是坐標原點,且滿足∠PDC=∠BAC,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com