【題目】計算

1;

2;

3

4;

5

6;

7

8

【答案】1-7;(27;(3411;(5-36-1;(718-13.34.

【解析】

1)根據(jù)有理數(shù)的加減運算即可求解;

2)根據(jù)有理數(shù)的加減運算即可求解;

3)根據(jù)有理數(shù)的乘法運算即可求解;

4)根據(jù)有理數(shù)的加減運算即可求解;

5)根據(jù)有理數(shù)的加減運算即可求解;

6)根據(jù)有理數(shù)的乘除運算即可求解;

7)根據(jù)有理數(shù)的乘除運算即可求解;

8)根據(jù)乘法分配律即可求解;

1

=15-22

=-7

2

=-2+9

=7;

3

=

=

4

=20-14+18-13

=38-27

=11;

5

=

=3-6

=-3

6

=

=-1;

7

=

=1

8

=

=-13-0.34

=-13.34.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xOy中,點A(x1,y1)與B(x2,y2),如果滿足x1+x2=0,y1﹣y2=0,其中x1≠x2,則稱點A與點B互為反等點.已知:點C(3,4)

(1)下列各點中,   與點C互為反等點;

D(﹣3,﹣4),E(3,4),F(xiàn)(﹣3,4)

(2)已知點G(﹣5,4),連接線段CG,若在線段CG上存在兩點P,Q互為反等點,求點P的橫坐標xP的取值范圍;

(3)已知⊙O的半徑為r,若⊙O與(2)中線段CG的兩個交點互為反等點,求r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長繩打上等距離的13個結(jié),然后以3個結(jié)間距、4個結(jié)間距、5個結(jié)間距的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角,這樣做的道理是(  )

A. 直角三角形兩個銳角互補

B. 三角形內(nèi)角和等于180°

C. 如果三角形兩條邊長的平方和等于第三邊長的平方

D. 如果三角形兩條邊長的平方和等于第三邊長的平方,那么這個三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入對應(yīng)的橫線內(nèi):

384.8,+843.1416,02008,-,-0.142,95%,+

非負整數(shù):______________________________________________________________

負整數(shù):______________________________________________________________

正分數(shù):_____________________________________________________________

負有理數(shù):______________________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個三角形的兩條邊和其中一邊上的高對應(yīng)相等,那么這兩個三角形的第三邊所對的角的關(guān)系是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點分別在、軸的正半軸上,點邊上的點, ,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點邊上的點.

(1)、的值和反比例函數(shù)的表達式.

(2)將矩形的一角折疊,使點與點重合,折痕分別與軸, 軸正半軸交于點,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OB,垂足為M,DE=4,連接AD,過EAD平行線交AB延長線于點C

1)求⊙O的半徑;

2)求證:CE是⊙O的切線;

3若弦DF與直徑AB交于點N,當∠DNB=30°時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程:Max2+bx+c=0Ncx2+bx+a=0,其中ac≠0,a≠c,以下四個結(jié)論:

①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

③如果m是方程M的一個根,那么是方程N的一個根;

④如果方程M和方程N有一個相同的根,那么這個根必是x=1

正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案