【題目】如圖,矩形ABCD對(duì)角線AC、BD交于點(diǎn)O,邊AB=6,AD=8,四邊形OCED為菱形,若將菱形OCED繞點(diǎn)O旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中OE與矩形ABCD的邊的交點(diǎn)始終為M,則線段ME的長度可取的整數(shù)值為___________________.
【答案】3,4,5
【解析】
連接OE交CD與點(diǎn)M,根據(jù)矩形與菱形的性質(zhì),由勾股定理求出OE的長,在旋轉(zhuǎn)過程中,求出OM的取值范圍,進(jìn)而得出ME的取值范圍,進(jìn)而求解.
如圖,連接OE交CD與點(diǎn)M,
∵矩形ABCD對(duì)角線AC、BD交于點(diǎn)O,邊AB=6,AD=8,
∴,,
∴由勾股定理知,,
∴,
∵四邊形OCED為菱形,
∴,,
∴由勾股定理知,,即,
∵菱形OCED繞點(diǎn)O旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中OE與矩形ABCD的邊的交點(diǎn)始終為M,
∴當(dāng)或時(shí),OM取得最小值3,
當(dāng)OE與OA或OB或OC或OD重合時(shí),OM取得最大值5,
∴,
∵,
∴,
∴線段ME的長度可取的整數(shù)值為3,4,5,
故答案為:3,4,5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點(diǎn)M與點(diǎn)C分別是AC與⊙O的交點(diǎn),點(diǎn)D是MB與⊙O的交點(diǎn),點(diǎn)P是AD延長線與BC的交點(diǎn),且ADAO=AMAP.
(1)連接OP,證明:△ADM∽△APO;
(2)證明:PD是⊙O的切線;
(3)若AD=12,AM=MC,求PB和DM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個(gè)格點(diǎn).拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).
(1)n為奇數(shù),且l經(jīng)過點(diǎn)H(0,1)和C(2,1),求b,c的值,并直接寫出哪個(gè)格點(diǎn)是該拋物線上的頂點(diǎn);
(2)n為偶數(shù),且l經(jīng)過點(diǎn)A(1, 0)和B(2,0),通過計(jì)算說明點(diǎn)F(0,2)和H(0,1)是否在拋物線上;
(3)若l經(jīng)過這九個(gè)格點(diǎn)中的三個(gè),直接寫出滿足這樣條件的拋物線條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,點(diǎn)P是BA延長線上一點(diǎn),連接PC、BC,∠PCA=∠B.
(1)求證:PC是⊙O的切線;
(2)若PC=4,PA=2,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,是上一點(diǎn),點(diǎn)從點(diǎn)沿折線運(yùn)動(dòng)到點(diǎn)時(shí)停止;點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,速度均為每秒1個(gè)單位長度.如果點(diǎn),同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為,已知與的函數(shù)圖象如圖2所示,有以下結(jié)論:
①;
②;
③當(dāng)時(shí),;
④當(dāng)時(shí),是等腰三角形;
⑤當(dāng)時(shí),.
其中正確的有( ).
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形是正方形,點(diǎn)的坐標(biāo)為,弧是以點(diǎn)為圓心,為半徑的圓;弧是以點(diǎn)為圓心,為半徑的圓;弧是以點(diǎn)為圓心,為半徑的圓;弧是以點(diǎn)為圓心,為半徑的圓弧,繼續(xù)以點(diǎn)為圓心,按上述作法得到的曲線…,稱為正方形的“漸開線”,則點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象和性質(zhì).小奧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.下面是小奧的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)的自變量的取值范圍是_________;
(2)下表是與的幾組對(duì)應(yīng)值,則的值為______,的值為______;
… | 1 | 2 | 3 | 4 | 5 | … | ||||||||
… | 2 | … |
(3)如右圖,在平面直角坐標(biāo)系中,描出了以上表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是.結(jié)合函數(shù)圖象,寫出該函數(shù)的其他兩條性質(zhì):①_________,②_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.
(1)求m的值及一次函數(shù)解析式;
(2)P是線段AB上的一點(diǎn),連接PC、PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com