【題目】如圖,菱形ABCD中,對角線AC、BD相交于點O , MN分別是邊AB、AD的中點,連接OMONMN , 則下列敘述正確的是( 。
A.△AOM和△AON都是等邊三角形
B.四邊形MBON和四邊形MODN都是菱形
C.四邊形AMON和四邊形ABCD都是位似圖形
D.四邊形MBCO和四邊形NDCO都是等腰梯形

【答案】C
【解析】根據(jù)位似圖形的定義可知A.OOMAM的大小卻無法判斷,所以無法判斷△AMO和△AON是等邊三角形,故錯誤;
B.無法判斷BM是否等于OBBM是否等于OC , 所以也無法判斷平行四邊形MBONMODN是菱形,故錯誤;
C.四邊形MBCO和四邊形NDCO是位似圖形,故此選項正確;
D.無法判斷四邊形MBCONDCO是等腰梯形,故此選項錯誤;
故選C.
【考點精析】本題主要考查了位似變換的相關(guān)知識點,需要掌握它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對應(yīng)點所在的直線都經(jīng)過同一個點—位似中心)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標(biāo)系后的頂點均在格點上。

(1)寫出點的坐標(biāo)

(2)畫出向上平移3個單位,向左平移5個單位得到的的圖像 ,并寫出頂點坐標(biāo);

(3)求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個不相等的實數(shù)根 (Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若兩個實數(shù)根的平方和等于15,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點F,DHBCH,交BEG.下列結(jié)論:①BD=CD;AD+CF=BD;CE=BF;AE=BG.其中正確的是

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABCO點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M , BC邊交x軸于點N(如圖).

(1)求邊OA在旋轉(zhuǎn)過程中所掃過的面積;
(2)旋轉(zhuǎn)過程中,當(dāng)MNAC平行時,求正方形OABC旋轉(zhuǎn)的度數(shù);
(3)設(shè)△MBN的周長為p , 在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)系分別為A(-2,1),B(-1,4),C(-3,-2)

(1)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1 , 并直接寫出C1點坐標(biāo);
(2)如果點Da , b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB:BC:CA=3:4:5,且周長為36cm,點P從點A開始沿AB邊向點B以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動;如果同時出發(fā),則過3秒時,求BPQ的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CABBC于點DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC , ∠B=30°,∠C=60°,E、F、MN分別為AB、CDBC、DA的中點,若BC=7,MN=3,則EF為(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習(xí)冊答案