已知關于x的方程的解是正數(shù),則m的取值范圍為   
【答案】分析:先解關于x的分式方程,求得x的值,然后再依據(jù)“解是正數(shù)”建立不等式求m的取值范圍.
解答:解:原方程整理得:2x+m=3x-6
解得:x=m+6
因為x>0,所以m+6>0,即m>-6.①
又因為原式是分式方程,所以,x≠2,即m+6≠2,所以m≠-4.②
由①②可得,則m的取值范圍為m>-6且m≠-4.
點評:由于我們的目的是求m的取值范圍,根據(jù)方程的解列出關于m的不等式,另外,解答本題時,易漏掉分母不等于0這個隱含的條件,這應引起足夠重視.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的方程(m+1)xm2+1+(m-2)x-1=0,問:
(1)m取何值時,它是一元二次方程并猜測方程的解;
(2)m取何值時,它是一元一次方程?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<數(shù)學公式
∴當k<數(shù)學公式時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2=數(shù)學公式=0,解得k=數(shù)學公式
檢驗知k=數(shù)學公式數(shù)學公式=0的解.
所以當k=數(shù)學公式時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學 來源:《第2章 一元二次方程》2010年創(chuàng)新題(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學 來源:《第23章 一元二次方程》2009年單元測試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年山東省濰坊市中考數(shù)學試卷(解析版) 題型:解答題

已知關于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個不相等的實數(shù)根x1,x2
(1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由.
解:(1)根據(jù)題意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴當k<時,方程有兩個不相等的實數(shù)根.
(2)存在.如果方程的兩個實數(shù)根互為相反數(shù),則x1+x2==0,解得k=
檢驗知k==0的解.
所以當k=時,方程的兩實數(shù)根x1,x2互為相反數(shù).
當你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,直接寫出正確的答案.

查看答案和解析>>

同步練習冊答案