【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出的依據(jù)是( 。
A. SAS B. SSS C. AAS D. ASA
【答案】B
【解析】
通過分析作圖的步驟,發(fā)現(xiàn)△OCD與△O′C′D′的三條邊分別對應(yīng)相等,于是利用邊邊邊,判定△OCD≌△O′C′D′,根據(jù)全等三角形對應(yīng)角相等得出∠A′O′B′=∠AOB.
作圖的步驟:
①以O為圓心,任意長為半徑畫弧,分別交OA、OB于點(diǎn)C、D;
②作射線O′B′,以O′為圓心,OC長為半徑畫弧,交O′B′于點(diǎn)C′;
③以C′為圓心,CD長為半徑畫弧,交前弧于點(diǎn)D′;
④過點(diǎn)D′作射線O′A′.
所以∠A′O′B′就是與∠AOB相等的角.
在△O′C′D′與△OCD中,∵,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,∴運(yùn)用的判定方法是邊邊邊.
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計(jì)劃在七年級學(xué)生中開設(shè)4個信息技術(shù)應(yīng)用興趣班,分別為“無人機(jī)”班,“3D打印”班,“網(wǎng)頁設(shè)計(jì)”班,“電腦繪畫”班,規(guī)定每人最多參加一個班,自愿報名.根據(jù)報名情況繪制了下面統(tǒng)計(jì)圖表,
請回答下列問題:
七年級興趣班報名情況統(tǒng)計(jì)表.
興趣班名稱 | 頻率 |
“無人機(jī)” | a |
“3D打印” | 0.05 |
“網(wǎng)頁設(shè)計(jì)” | 0.25 |
“電腦繪畫” | 0.40 |
(1)報名參加興趣班的總?cè)藬?shù)為人;統(tǒng)計(jì)表中的a=;
(2)將統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了均衡班級人數(shù),在“電腦繪畫”班中至少動員幾人到“3D打印”班,才能使“電腦繪畫”班人數(shù)不超過“3D打印”班人數(shù)的2倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格MNPQ中,每個小方格的邊長都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ的4條邊的小方格頂點(diǎn)上.
(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個小方格的邊長為1,求:
①△ABQ,△BCM,△CDN,△ADP的面積;
②正方形ABCD的面積.
(2)設(shè)MB=a,BQ=b,利用這個圖形中的直角三角形和正方形的面積關(guān)系,你能驗(yàn)證已學(xué)過的哪一個數(shù)學(xué)公式或定理嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題
《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,也是世界上最早的印刷本數(shù)學(xué)書它的出現(xiàn)標(biāo)志著中國古代數(shù)學(xué)體系的形成.《九章算術(shù)》早在隋唐時期即已傳入朝鮮、日本并被譯成日、俄、德、法等多種文字版本.書中有如下問題:今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?
大意是:有幾個人一起去買一件物品,如果每人出8元,則多了3元;如果每人出7元,則少了4元錢,問有多少人?該物品價值多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC= .將矩形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)至矩形AB′C′D′,使得點(diǎn)B′恰好落在對角線BD上,連接DD′,則DD′的長度為( )
A.
B.
C. +1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,點(diǎn)E是BC的中點(diǎn),連接DE,DF⊥DE交BA的延長線于點(diǎn)F.連接EF、AC,DE、EF分別與C交于點(diǎn)P、Q,則PQ=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1的側(cè)棱長和底面各邊長均為2,其主視圖是邊長為2的正方形,則此直三棱柱左視圖的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△BCE≌△DCF;
(2)求證:AB+AD=2AE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com