【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,∠BAD=120°,AB=AD.
(1)、求證:四邊形ABCD是等腰梯形;(2)、已知AC=6,求陰影部分的面積.
【答案】(1)、證明過(guò)程見(jiàn)解析(2)、4π-3
【解析】
試題分析:(1)根據(jù)AB=AD,∠BAD=120°可以得到∠ABD=∠ADB=30°,從而說(shuō)明弧AB和弧AD的度數(shù)為60°,根據(jù)BC為直徑可以說(shuō)明弧CD的度數(shù)也是60°,從而可以得到AB=CD,然后根據(jù)∠CAD=∠ACB=30°得出AD∥BC;(2)、陰影部分面積利用扇形面積減去△BOD的面積.
試題解析:⑴、∵∠BAD=120°,AB=AD ∴∠ABD=∠ADB=30° ∴弧AB和弧AD的度數(shù)都等于60°
又 ∵BC是直徑 ∴弧CD的度數(shù)也是60°∴AB=CD
∵∠CAD=∠ACB=30°∴BC∥AD ∴四邊形ABCD是等腰梯形.
⑵、∵BC是直徑 ∴∠BAC=90° ∵∠ACB=30°,AC=6∴BC= ∴r=2
∵弧AB和弧AD的度數(shù)都等于60°∴∠BOD=120°
連接OA交BD于點(diǎn)E,則OA⊥BD ∴OE=OB×sin30°= BE=0B×cos30°=3BD=2BE=6
∴==4π-3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+2交x軸于A(﹣1,0),B(4,0)兩點(diǎn),交y軸于點(diǎn)C,與過(guò)點(diǎn)C且平行于x軸的直線交于另一點(diǎn)D,點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)求拋物線解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)E在x軸上,若以A,E,D,P為頂點(diǎn)的四邊形是平行四邊形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)過(guò)點(diǎn)P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q′.是否存在點(diǎn)P,使Q′恰好落在x軸上?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種新的運(yùn)算“*”,并且規(guī)定:a*b=a2-2b.則(-3)*(-1)=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)是4,點(diǎn)P是AD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn),若△PBE是等腰三角形,則腰長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 23表示2×3 B. ﹣32與(﹣3)2互為相反數(shù)
C. (﹣4)2中﹣4是底數(shù),2是冪 D. a3=(﹣a)3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com