【題目】在△ABC 中,ABAC,D 是直線 BC 上一點(不與點 B、C 重合),以 AD 為一邊在 AD的右側作△ADE,ADAE,∠DAE=∠BAC,連接 CE.

1)如圖 1,當點 D 在線段 BC 上時,求證:ABD≌△ACE;

2)如圖 2,當點 D 在線段 BC 上時,如果∠BAC90°,求∠BCE 的度數(shù);

3)如圖 3,若∠BAC=α,∠BCE=β.D 在線段 CB 的延長線上時,則α、β之間有怎樣 的數(shù)量關系?并證明你的結論.

【答案】1)見解析;290;3

【解析】1)首先求出∠BAD=CAE,再利用SAS得出ABD≌△ACE即可;

(2)ABAC,BAC90,推出∠ABDACB45 ,ABDACE,得到∠ABDACE,等量代換得到∠ABDACE,即可求出∠BCE;

(3)DCB的延長線上時,α=β,求出∠BAD=CAE.推出ADBAEC,推出∠BAC=BCE.根據(jù)三角形外角性質求出即可.

(1)∵∠DAE=BAC ,

BAD=EAC

∵在ABDACE中,

AB AC,BAD=CAE,AD=AE,

ABDACE SAS ;

(2)AB AC,BAC 90 ,

ABDACB 45 ,

ABDACE ,

ABDACE,

ABDACE,

BCEACDACE90

(3)當點D在線段CB的延長線上時,α=β.

理由:∵∠DAE=BAC,

∴∠DAB=EAC,

∵在ADBAEC中,

AD=AE,DAB=EAC,AB=AC,

∴△ADB≌△AEC(SAS),

∴∠ABD=ACE,

∵∠ABD=BAC+ACB,ACE=BCE+ACB,

∴∠BAC=BCE,

α=β.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填在相應的括號內.

,0,0.16,3,-, ,-,-3.14

有理數(shù):{____________________________________________________};

無理數(shù):{____________________________________________________};

負實數(shù):{____________________________________________________}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C、D把一個400米的環(huán)形跑道分成相等的4段,即兩條直道和兩條彎道的長度相同.甲平均每秒跑4乙平均每秒跑6若甲、乙兩人分別從A、C兩處同時相向出發(fā)(如圖),當他們第4次相遇時其相遇點在____________(”AB””BC””CD””DA”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于x軸,一頂點在y軸上,從內到外,它們的邊長依次為2,4,6,8,…,頂點依次用A1、A2、A3、A4、…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,則A2017的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標系中的位置如圖.

(1)分別寫出下列各點的坐標:A′ ; B′ ;C′ ;

(2)說明△A′B′C′由△ABC經(jīng)過怎樣的平移得到?

(3)若點P(a,b)是△ABC內部一點,則平移后△A′B′C′內的對應點P′的坐標為 ;

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykx4的圖象經(jīng)過點(3,-2)

(1)求這個函數(shù)的解析式;

(2)畫出該函數(shù)的圖象;

(3)判斷點(3,5)是否在此函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知∠AOB=80°,OC是∠AOB內的一條射線,OD,OE分別平分∠BOC和∠COA

(1)求∠DOE的度數(shù);

(2)當射線OC繞點O旋轉到OB的左側時如圖②(或旋轉到OA的右側時如圖③),OD,OE仍是∠BOC和∠COA的平分線,此時∠DOE的大小是否和(1)中的答案相同?若相同,請選取一種情況寫出你的求解過程;若不相同,請說明理由.

查看答案和解析>>

同步練習冊答案