精英家教網 > 初中數學 > 題目詳情
已知關于x的方程x2-nx+m=0有一個根是m(m≠0),則m-n=   
【答案】分析:將x=m代入原方程,列出關于m的一元二次方程m2-nm+m=0,然后通過因式分解法解該方程求得m-n的值即可.
解答:解:∵關于x的方程x2-nx+m=0有一個根是m(m≠0),
∴x=m滿足關于x的方程x2-nx+m=0,
∴m2-nm+m=0,即m(m-n+1)=0,
∴m=0(舍去),或m-n+1=0,
∴m-n=-1;
故答案是:-1.
點評:本題考查了一元二次方程的解的定義、因式分解的應用.解答該題時,通過提取公因式m將方程m2-nm+m=0的左邊轉化為兩式之積的形式,從而求得m-n的值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數根.
(1)求m的最大整數是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數根,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數值,方程總有實數根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案