【題目】如圖,五邊形ABCDE中,AB∥CD,∠1,∠2,∠3分別是∠BAE,∠AED,∠EDC的外角,則∠1+∠2+∠3= .
【答案】180°
【解析】解:∵AB∥CD,
∴∠B+∠C=180°,
∴∠4+∠5=180°,
根據(jù)多邊形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=360°﹣180°=180°.
所以答案是:180°.
【考點精析】本題主要考查了平行線的性質(zhì)和多邊形內(nèi)角與外角的相關(guān)知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計劃開展四項活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項活動,學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補全條形統(tǒng)計圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a ≠0)的部分圖象,其頂點坐標(biāo)為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0; ②3a+b=0; ③b2=4a(c﹣n); ④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發(fā),以3cm/s的速度向右運動,到達(dá)點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發(fā),以1cm/s的速度向右運動.設(shè)它們同時出發(fā),運動時間為ts.當(dāng)點P與點Q第二次重合時,P、Q兩點停止運動.
(1)AC=__cm,BC=__cm;
(2)當(dāng)t為何值時,AP=PQ;
(3)當(dāng)t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2﹣6x+2=0,原方程可變形為( )
A.(x﹣3)2=11B.(x﹣3)2=7C.(x+3)2=7D.(x﹣3)2=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當(dāng)三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為5的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;
(2)拋物線的關(guān)系式為 ;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達(dá)△AB′C的位置.請判斷點B′C′是否在(2)中的拋物線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑等于8cm,圓心O到直線l上一點的距離為4cm,則直線l與⊙O的公共點的個數(shù)為( 。
A.0B.1C.2D.1或2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com