【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要900元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要960元.
(1)求購(gòu)進(jìn)甲、乙兩種花卉每盆各需多少元?
(2)該花店購(gòu)進(jìn)甲,乙兩種花卉共100盆,甲種花卉每盆售價(jià)20元,乙種花齊每盆售價(jià)16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過(guò)480元,則至少購(gòu)進(jìn)甲種花卉多少盆?
【答案】(1)購(gòu)進(jìn)甲種花卉每盆15元,購(gòu)進(jìn)乙種花卉每盆12元;(2)至少購(gòu)進(jìn)甲種花卉81盆.
【解析】
(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,從而可以求得購(gòu)進(jìn)甲、乙兩種花卉,每盆各需多少元;
(2)設(shè)購(gòu)進(jìn)甲種花卉a盆,則購(gòu)進(jìn)乙種花卉(100-a)盆,根據(jù)“獲利超過(guò)480元”列出不等式并解答.
解:(1)設(shè)購(gòu)進(jìn)甲種花卉每盆元,購(gòu)進(jìn)乙種花卉每盆元.
,解得.
答:購(gòu)進(jìn)甲種花卉每盆15元,購(gòu)進(jìn)乙種花卉每盆12元.
(2)設(shè)購(gòu)進(jìn)甲種花卉盆,則購(gòu)進(jìn)乙種花卉盆.
,解得.
∵為整數(shù),∴的最小整數(shù)值為81.
∴至少購(gòu)進(jìn)甲種花卉81盆.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中裝有若干個(gè)除顏色外均相同的小球,小明每次從袋子中摸出一個(gè)球,記錄下顏色,然后放回,重復(fù)這樣的試驗(yàn)1000次,記錄結(jié)果如下:
實(shí)驗(yàn)次數(shù)n | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 1000 |
摸到紅球 次數(shù)m | 151 | 221 | 289 | 358 | 429 | 497 | 571 | 702 |
摸到紅球 頻率 | 0.75 | 0.74 | 0.72 | 0.72 | 0.72 | 0.71 | a | b |
(1)表格中a=_____;(精確到0.01)
(2)估計(jì)從袋子中摸出一個(gè)球恰好是紅球的概率約為______;(精確到0.1)
(3)如果袋子中有7個(gè)紅球,那么袋子中除了紅球,估計(jì)還有幾個(gè)其他顏色的球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-4,4),點(diǎn)B的坐標(biāo)為(0,2).
(1)求直線AB的解析式;
(2)以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線AC交x軸的負(fù)半軸于點(diǎn)C,射線AD交y軸的負(fù)半軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn)時(shí),OC-OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍;
(3)如圖2,點(diǎn)M(-4,0)和N(2,0)是x軸上的兩個(gè)點(diǎn),點(diǎn)P是直線AB上一點(diǎn).當(dāng)△PMN是直角三角形時(shí),請(qǐng)求出滿足條件的所有點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品交易會(huì)上,一商人將每件進(jìn)價(jià)為5元的紀(jì)念品,按每件9元出售,每天可售出32件.他想采用提高售價(jià)的辦法來(lái)增加利潤(rùn),經(jīng)試驗(yàn),發(fā)現(xiàn)這種紀(jì)念品每件提價(jià)2元,每天的銷售量會(huì)減少8件.
(1)當(dāng)售價(jià)定為多少元時(shí),每天的利潤(rùn)為140元?
(2)寫出每天所得的利潤(rùn)y(元)與售價(jià)x(元/件)之間的函數(shù)關(guān)系式,每件售價(jià)定為多少元,才能使一天所得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×售出件數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A,B是拋物線y=ax2(a>0)上兩個(gè)不同的點(diǎn),其中A在第二象限,B在第一象限.
(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時(shí),求此拋物線的解析式和A,B兩點(diǎn)的橫坐標(biāo)的乘積;
(2)如圖2所示,在(1)所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時(shí),求證:A、B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值;
(3)在(2)的條件下,如果直線AB與x軸、y軸分別交于點(diǎn)P、D,且點(diǎn)B的橫坐標(biāo)為 .那么在x軸上是否存在一點(diǎn)Q,使△QDP為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于A、B兩點(diǎn),OA=8,OB=6.動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿路線O→A→B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)停止.
(1)則A點(diǎn)的坐標(biāo)為_____,B兩點(diǎn)的坐標(biāo)為______;
(2)當(dāng)點(diǎn)P在OA上,且BP平分∠OBA時(shí),則此時(shí)點(diǎn)P的坐標(biāo)為______;
(3)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤4),△BPA的面積為S,求S與t之間的函數(shù)關(guān)系式:并直接寫出當(dāng)S=8時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:我們把對(duì)非負(fù)實(shí)數(shù)“四舍五入”到個(gè)位的值記為,
即當(dāng)為非負(fù)整數(shù)時(shí),若,則.
例如:,,….
請(qǐng)解決下列問(wèn)題:
(1)______;
(2)若,則實(shí)數(shù)的取值范圍是_________;
(3)①;
②當(dāng)為非負(fù)整數(shù)時(shí),;
③滿足的非負(fù)實(shí)數(shù)只有兩個(gè).其中結(jié)論正確的是_____(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com