已知,二次函數(shù)y=mx2+3(m-
1
4
)x+4(m<0)與x軸交于A、B兩點,(A在B的左邊),與y軸交于點C,且∠ACB=90度.
(1)求這個二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設OD=x,矩形DEFG的面積為S,求S關于x的函數(shù)解析式;
(3)將(1)中所得拋物線向左平移2個單位后,與x軸交于A′、B′兩點(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線上,矩形D′E′F′G′的周長是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.
(1)∵CO2=AO•OB
m=-
1
4

y=-
1
4
x2-
3
2
x+4

(2)A(-8,0),B(2,0)
OD=x
ED=4-2x,EF=5x
S=ED•EF=-10x2+20x(0<x<2)

(3)平移后的拋物線y′=-
1
4
x2-
5
2

∴A′(-10,0)B′(0,0)
設D′(x,0),則G′(-10-x,0)
E′(x,-
1
4
x2-
5
2
x),
F′(-10-x,-
1
4
x2-
5
2
x)
C矩形D'E'F'G′=2(GD+DE)
=2[10+2x+(-
1
4
x2-
5
2
x)]
=-
1
2
x2-x+20(-5<x<0)
當x=-1時,C矩形D′E′F′G′最大值=20.5.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-
3
8
x2-
3
4
x+3
與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C.
(1)求點A、B的坐標;
(2)設D為已知拋物線的對稱軸上的任意一點,當△ACD的面積等于△ACB的面積時,求點D的坐標;
(3)若直線l過點E(4,0),M為直線l上的動點,當以A、B、M為頂點所作的直角三角形有且只有三個時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點D,求△ABD的面積;
(3)當y<0,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過A(2,0),B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積和周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店經(jīng)銷甲、乙兩種商品,現(xiàn)有如下信息:
信息1:甲、乙兩種商品的進貨單價之和是5元.
信息2:甲商品零售單價比進貨單價多1元,乙商品零售單價比進貨單價的2倍少1元.
信息3:按零售單價購買甲商品3件和乙商品2件,共付了19元.
請根據(jù)以上信息,解答下列問題:
(Ⅰ)甲、乙兩種商品的進貨單價各是多少元?
(Ⅱ)該商品平均每天賣出甲商品500件和乙商品300件,經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價分別降0.1元,這兩種商品每天可各多銷售100件,為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元,在不考慮其他因素的條件下,當m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=
3
,矩形ABOC繞點O按順時針方向旋轉60°后得到矩形EFOD.點A的對應點為點E,點B的對應點為點F,點C的對應點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知矩形ABCD的邊長AB=2,BC=3,點P是AD邊上的一動點(P異于A、D),Q是BC邊上的任意一點.連AQ、DQ,過P作PEDQ交AQ于E,作PFAQ交DQ于F.
(1)求證:△APE△ADQ;
(2)設AP的長為x,試求△PEF的面積S△PEF關于x的函數(shù)關系式,并求當P在何處時,S△PEF取得最大值,最大值為多少?
(3)當Q在何處時,△ADQ的周長最小?(須給出確定Q在何處的過程或方法,不必給出證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知⊙P的半徑為2,圓心P在拋物線y=
1
2
x2-2上運動,當⊙P與x軸相切時,圓心P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點C(0,1),且與x軸交于不同的兩點A、B,若點A的坐標是(1,0),點B在點A的右側.
(1)c=______;
(2)求a的取值范圍;
(3)若過點C且平行于x軸的直線交該拋物線于另一點D,AD、BC交于點P,記△PCD的面積為S1,△PAB的面積為S2,求S1-S2的值.

查看答案和解析>>

同步練習冊答案