某商店經(jīng)銷甲、乙兩種商品,現(xiàn)有如下信息:
信息1:甲、乙兩種商品的進(jìn)貨單價之和是5元.
信息2:甲商品零售單價比進(jìn)貨單價多1元,乙商品零售單價比進(jìn)貨單價的2倍少1元.
信息3:按零售單價購買甲商品3件和乙商品2件,共付了19元.
請根據(jù)以上信息,解答下列問題:
(Ⅰ)甲、乙兩種商品的進(jìn)貨單價各是多少元?
(Ⅱ)該商品平均每天賣出甲商品500件和乙商品300件,經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價分別降0.1元,這兩種商品每天可各多銷售100件,為了使每天獲取更大的利潤,商店決定把甲、乙兩種商品的零售單價都下降m元,在不考慮其他因素的條件下,當(dāng)m定為多少時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大?每天的最大利潤是多少?
(1)設(shè)甲種商品的進(jìn)貨單價為x元,乙種商品的進(jìn)貨單價為y元,由題意得
x+y=5
3(x+1)+2(2y-1)=19

解得2
x=2
y=3

答:甲種商品的進(jìn)貨單價為2元,乙種商品的進(jìn)貨單價為3元.

(2)設(shè)商店每天銷售甲、乙兩種商品獲取的利潤為W元,由題意得
W=(2+1-2-m)(500+100×
m
0.1
)+(2×3-1-3-m)(300+100×
m
0.1

=-2000m2+2200m+1100
=-2000(m-0.55)2+1705;
答:當(dāng)m定為0.55時,才能使商店每天銷售甲、乙兩種商品獲取的利潤最大,每天的最大利潤是1705元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c,與x軸交于點(diǎn)A(-3,0),對稱軸為x=-1,頂點(diǎn)C到x軸的距離為2,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點(diǎn)A,B.已知點(diǎn)B的坐標(biāo)為(-2,-2),點(diǎn)A在第一象限內(nèi),且tan∠AOx=4.過點(diǎn)A作直線ACx軸,交拋物線于另一點(diǎn)C.
(1)求雙曲線和拋物線的解析式;
(2)計(jì)算△ABC的面積;
(3)在拋物線上是否存在點(diǎn)D,使△ABD的面積等于△ABC的面積?若存在,請你寫出點(diǎn)D的坐標(biāo);若不存在,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

衢江區(qū)某蔬菜基地種植西紅柿,由歷年市場行情得知,從2月1日起的300天內(nèi),西紅柿市場售價 w1與上市時間t的關(guān)系用圖甲的一條折線表示;西紅柿的種植成本 w2與上市時間t的關(guān)系用圖乙表示的拋物線段表示.
(1)求出圖甲表示的市場售價 w1與時間t的函數(shù)關(guān)系式;
(2)求出圖乙表示的種植成本 w2與時間t的函數(shù)關(guān)系式;
(3)市場售價減去種植成本為純收益,當(dāng)0<t≤200時,何時上市西紅柿純收益最大?(售價與成本單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=
1
2
x2+bx+c的圖象經(jīng)過點(diǎn)A(c,-2),,求證:這個二次函數(shù)圖象的對稱軸是x=3.
題目中的矩形框部分是一段墨水污染了無法辨認(rèn)的文字.
(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請寫出求解過程;若不能,請說明理由;
(2)請你根據(jù)已有的信息,在原題中的矩形框中,填加一個適當(dāng)?shù)臈l件,把原題補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,其頂點(diǎn)為D.
(1)求b、c的值并寫出拋物線的對稱軸;
(2)連接BC,過點(diǎn)O作直線OE⊥BC交拋物線的對稱軸于點(diǎn)E.求證:四邊形ODBE是等腰梯形;
(3)拋物線上是否存在點(diǎn)Q,使得△OBQ的面積等于四邊形ODBE的面積的
1
3
?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖矩形OABC,AB=2OA=2n,分別以O(shè)A和OC為x、y軸建立平面直角坐標(biāo)系,連接OB,沿OB折疊,使點(diǎn)A落在P處.過P作PQ⊥y軸于Q.
(1)求OD:OA的值;
(2)以B為頂點(diǎn)的拋物線:y=ax2+bx+c,經(jīng)過點(diǎn)D,與直線OB相交于E,過E作EF⊥y軸于F,試判斷2•PQ•EF與矩形OABC面積的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,BD=20,AD>AB,設(shè)∠ABD=α,已知sinα是方程25x2-35x+12=0的一個實(shí)根,點(diǎn)E,F(xiàn)分別是BC,DC上的點(diǎn),EC+CF=8,設(shè)BE=x,△AEF的面積等于y.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)E,F(xiàn)兩點(diǎn)在什么位置時,y有最小值并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,二次函數(shù)y=mx2+3(m-
1
4
)x+4(m<0)與x軸交于A、B兩點(diǎn),(A在B的左邊),與y軸交于點(diǎn)C,且∠ACB=90度.
(1)求這個二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設(shè)OD=x,矩形DEFG的面積為S,求S關(guān)于x的函數(shù)解析式;
(3)將(1)中所得拋物線向左平移2個單位后,與x軸交于A′、B′兩點(diǎn)(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線上,矩形D′E′F′G′的周長是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案