【題目】如圖,正方形ABCD,將邊CD繞點C順時針旋轉60°,得到線段CE,連接DE,AE,BD交于點F.
(1)求∠AFB的度數(shù);
(2)求證:BF=EF;
(3)連接CF,直接用等式表示線段AB,CF,EF的數(shù)量關系.
【答案】(1)∠AFB=60°;(2)見解析;(3)AB+CF=2EF.
【解析】
(1)根據正方形的性質得∠ADB=45°,再有旋轉圖形的邊相等,則對應的底角也相等求出∠DAE=∠DEA=15°,從而得到∠AFB=60°.
(2)由等邊三角形及∠DEA=15°,得到∠CEF=∠CBF=45°,再結合已知根據SAS證明△ADF≌△CDF,再由角的代換證明出△ECF≌△BCF,從而證明BF=EF.
(3過C作CG⊥BD于G,由已知求出∠GCF=30°從而得到CF=2FG,設FG=x,從而求出AB+CF=2x+2x,EF=BF=BG+FG=x+x,最終得到AB+CF=2EF.
解:(1)∵四邊形ABCD是正方形,
∴∠ADB=∠ADC=45°,
由旋轉得:CD=CE,∠DCE=60°,
∴△DCE是等邊三角形,
∴CD=DE=AD,∠ADE=90°+60°=150°,
∴∠DAE=∠DEA=15°,
∴∠AFB=∠FAD+∠ADB=15°+45°=60°;
(2)連接CF,
∵△CDE是等邊三角形,
∴∠DEC=60°,
∵∠DEA=15°,
∴∠CEF=∠CBF=45°,
∵四邊形ABCD是正方形,
∴AD=CD,∠ADF=∠CDF=45°,
∵DF=DF,
∴△ADF≌△CDF(SAS),
∴∠DAF=∠DCF=15°,
∴∠FCB=90°﹣15°=75°,∠ECF=60°+15°=75°,
∴∠FCB=∠ECF,
∵CF=CF,
∴△ECF≌△BCF(SAS),
∴BF=EF;
(3)AB+CF=2EF,理由是:
過C作CG⊥BD于G,
∵∠CBD=45°,
∴△CGB是等腰直角三角形,
∵∠BCF=75°,
∴∠GCF=30°,
∴CF=2FG,
設FG=x,則CF=2x,CG=BG=x,
∴BC=AB=CG=x,
∴AB+CF=2x+2x,EF=BF=BG+FG=x+x,
∴AB+CF=2EF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某地有一座圓弧形拱橋,
(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;
(2)如圖2,過點O作OC⊥AB于點D,交圓弧于點C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經過拱橋,請通過計算說明此貨船能否順利通過這座拱橋.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標為(3,3).
設反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.
【題型】解答題
【結束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點D是BC上任意一點,將線段AD繞點A逆時針方向旋轉,得到線段AE,連結EC.
依題意補全圖形;
求的度數(shù);
若,,將射線DA繞點D順時針旋轉交EC的延長線于點F,請寫出求AF長的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結果保留整數(shù)).(參考數(shù)據:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是( 。
A. 若點(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當k>0時,y隨x的增大而減小
C. 過圖象上任一點P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關于直線y=x和y=﹣x成軸對稱
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點F.
(1)求證:BF=BC;
(2)若AB=4cm,AD=3cm,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當AB=8,CE=2時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小王在長江邊某瞭望臺D處測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為多少米?(結果精確到0.1,參考數(shù)據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com