【題目】已知A、B兩地相距40千米,中午1200時,甲從A地出發(fā)開車到B地,1210時乙從B地出發(fā)騎自行車到A地,設甲行駛的時間為t(分),甲、乙兩人離A地的距離S(千米)與時間t(分)之間的關系如圖所示.由圖中的信息可知,乙到達A地的時間為(

A1400 B1420 C1430 D1440

【答案】C.

【解析】

試題解析:因為甲60分走完全程0千米,所以甲的速度是千米/分,

由圖中看出兩人在走了30千米時相遇,那么甲此時用了30÷=45分,則乙用了(45-10=35分,

所以乙的速度為:(40-30÷35=千米/分,所以乙走完全程需要時間為:40÷=140分,此時的時間應加上乙先前遲出發(fā)的10分,現(xiàn)在的時間為14:點30分;

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心 點,按順時針方向旋轉(zhuǎn) 度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=k2x+b圖象的交點為A(m,1),B(﹣2,n),OA與x軸正方向的夾角為α,且tanα=

(1)求反比例函數(shù)及一次函數(shù)的表達式;

(2)設直線AB與x軸交于點C,且AC與x軸正方向的夾角為β,求tanβ的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):

探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關系呢?

已知:如圖1,FDC與ECD分別為ADC的兩個外角,試探究A與FDC+ECD的數(shù)量關系.

探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關系?

已知:如圖2,在ADC中,DP、CP分別平分ADC和ACD,試探究P與A的數(shù)量關系.

探究三:若將ADC改為任意四邊形ABCD呢?

已知:如圖3,在四邊形ABCD中,DP、CP分別平分ADC和BCD,試利用上述結(jié)論探究P與A+B的數(shù)量關系.

探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?

請直接寫出P與A+B+E+F的數(shù)量關系:      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要設計一本畫冊的封面,封面長40cm,寬30cm,正中央是一個與整個封面長寬比例相同的矩形畫.如果要使四周的邊襯所占面積是封面面積的,上、下邊襯等寬,左、右邊襯等寬,應如何設計四周邊襯的寬度(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):≈2.236).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,A、B、C、D四點共圓,過點C的切線CEBD,與AB的延長線交于點E.

(1)求證:BAC=CAD;

(2)如圖②,若AB為O的直徑,AD=6,AB=10,求CE的長;

(3)在(2)的條件下,連接BC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,A=C=90°,BE平分ABC,DF平分ADC,則BE與DF有何位置關系?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州某樓盤準備以每平方米的10000元均價銷售,經(jīng)過兩次下調(diào)后,決定以每平方米8600元的均價開盤.若設平均每次下調(diào)的百分率為x,則可列方程________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Aa32ab21,Ba3ab23a2b,則AB( )

A. 2a33ab23a2b1 B. 2a3ab23a2b1

C. 2a3ab23a2b1 D. 2a3ab23a2b1

查看答案和解析>>

同步練習冊答案