【題目】已知A、B兩地相距40千米,中午12:00時,甲從A地出發(fā)開車到B地,12:10時乙從B地出發(fā)騎自行車到A地,設甲行駛的時間為t(分),甲、乙兩人離A地的距離S(千米)與時間t(分)之間的關系如圖所示.由圖中的信息可知,乙到達A地的時間為( )
A.14:00 B.14:20 C.14:30 D.14:40
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點,按順時針方向旋轉(zhuǎn) 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=k2x+b圖象的交點為A(m,1),B(﹣2,n),OA與x軸正方向的夾角為α,且tanα=.
(1)求反比例函數(shù)及一次函數(shù)的表達式;
(2)設直線AB與x軸交于點C,且AC與x軸正方向的夾角為β,求tanβ的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關系.
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試利用上述結(jié)論探究∠P與∠A+∠B的數(shù)量關系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要設計一本畫冊的封面,封面長40cm,寬30cm,正中央是一個與整個封面長寬比例相同的矩形畫.如果要使四周的邊襯所占面積是封面面積的,上、下邊襯等寬,左、右邊襯等寬,應如何設計四周邊襯的寬度(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):≈2.236).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】揚州某樓盤準備以每平方米的10000元均價銷售,經(jīng)過兩次下調(diào)后,決定以每平方米8600元的均價開盤.若設平均每次下調(diào)的百分率為x,則可列方程________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A=a3-2ab2+1,B=a3+ab2-3a2b,則A+B=( ).
A. 2a3-3ab2-3a2b+1 B. 2a3+ab2-3a2b+1
C. 2a3+ab2-3a2b+1 D. 2a3-ab2-3a2b+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com