【題目】如圖,⊙O中,點(diǎn)A為 中點(diǎn),BD為直徑,過A作AP∥BC交DB的延長線于點(diǎn)P.
(1)求證:PA是⊙O的切線;
(2)若 ,AB=6,求sin∠ABD的值.
【答案】
(1)證明:連結(jié)AO,交BC于點(diǎn)E.
∵點(diǎn)A是 的中點(diǎn)
∴AO⊥BC,
又∵AP∥BC,
∴AP⊥AO,
∴AP是⊙O的切線
(2)解:∵AO⊥BC, ,
∴ ,
又∵AB=6
∴ ,
∵OA=OB
∴∠ABD=∠BAO,
∴ .
【解析】(1)根據(jù)垂徑定理得出AO⊥BC,進(jìn)而根據(jù)平行線的性質(zhì)得出AP⊥AO,即可證得結(jié)論;(2)根據(jù)垂徑定理得出BE=2 ,在RT△ABE中,利用銳角三角函數(shù)關(guān)系得出sin∠BAO= ,再根據(jù)等腰三角形的性質(zhì)得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO= .
【考點(diǎn)精析】掌握切線的判定定理是解答本題的根本,需要知道切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù) 經(jīng)過正方形AOBC對(duì)角線的交點(diǎn),半徑為(4﹣2 )的圓內(nèi)切于△ABC,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)當(dāng)一次性購物標(biāo)價(jià)總額是300元時(shí),甲、乙超市實(shí)付款分別是多少?
(2)當(dāng)標(biāo)價(jià)總額是多少時(shí),甲、乙超市實(shí)付款一樣?
(3)小王兩次到乙超市分別購物付款198元和466元,若他只去一次該超市購買同樣多的商品,可以節(jié)省多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答
(1)【閱讀發(fā)現(xiàn)】如圖①,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
(2)【拓展應(yīng)用】如圖②,在矩形ABCD(AB>BC)的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.
(i)求證:ED=FC.
(ii)若∠ADE=20°,求∠DMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=13,BC=14.
(1)如圖1,AD⊥BC于點(diǎn)D,且BD=5,則△ABC的面積為 ;
(2)在(1)的條件下,如圖2,點(diǎn)H是線段AC上任意一點(diǎn),分別過點(diǎn)A,C作直線BH的垂線,垂足為E,F(xiàn),設(shè)BH=x,AE=m,CF=n,請(qǐng)用含x的代數(shù)式表示m+n,并求m+n的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)的橫坐標(biāo)分別為﹣1,3,則下列結(jié)論正確的個(gè)數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對(duì)于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
為了緩解北京市西部地區(qū)的交通擁堵現(xiàn)象,市政府決定修建本市的第一條磁浮地鐵線路﹣﹣“S1線”.該線路連接北京城區(qū)與門頭溝,西起石門營,向東經(jīng)蘋果園,終點(diǎn)至慈壽寺與6號(hào)線和10號(hào)線相接.為使該工程提前4個(gè)月完成,在保證質(zhì)量的前提下,必須把工作效率提高10%.問原計(jì)劃完成這項(xiàng)工程需用多少個(gè)月.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點(diǎn)E在直線AB與CD之間,連結(jié)AE、BE,試說明∠BEE+∠DCE=∠AEC.下面給出了這道題的解題過程,請(qǐng)完成下面的解題過程,并填空(理由或數(shù)學(xué)式):
解:如圖①,過點(diǎn)E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)當(dāng)點(diǎn)E在如圖②的位置時(shí),其他條件不變,試說明∠AEC+∠FGC+∠DCE=360°;
(應(yīng)用)點(diǎn)E、F、G在直線AB與CD之間,連結(jié)AE、EF、FG和CG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG= °.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com