【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,交AB于點(diǎn)E,過點(diǎn)D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長(zhǎng).
【答案】(1)見解析;(2)9
【解析】
試題分析:(1)連接OD,利用AB=AC,OD=OC,證得OD∥AD,易證DF⊥OD,故DF為⊙O的切線;
(2)證得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.
(1)證明:如圖,
連接OD.
∵AB=AC,
∴∠B=∠C,
∵OD=OC,
∴∠ODC=∠C,
∴∠ODC=∠B,
∴OD∥AB,
∵DF⊥AB,
∴OD⊥DF,
∵點(diǎn)D在⊙O上,
∴直線DF與⊙O相切;
(2)解:∵四邊形ACDE是⊙O的內(nèi)接四邊形,
∴∠AED+∠ACD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠ACD,
∵∠B=∠B,
∴△BED∽△BCA,
∴=,
∵OD∥AB,AO=CO,
∴BD=CD=BC=3,
又∵AE=7,
∴=,
∴BE=2,
∴AC=AB=AE+BE=7+2=9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別在菱形ABCD的四條邊上,BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE,得到四邊形EFGH,若AB=a,∠A=60°,當(dāng)四邊形
EFGH的面積取得最大時(shí),BE的長(zhǎng)度為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)3,4,x,5,7的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形DEFG是△ABC的內(nèi)接矩形,如果△ABC的高線AH長(zhǎng)8cm,底邊BC長(zhǎng)10cm,設(shè)DG=xcm,DE=ycm,
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),四邊形DEFG的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(3,2)和點(diǎn)E是正比例函數(shù)y=ax與反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)填空:點(diǎn)E坐標(biāo): ;不等式的解集為 ;
(2)求正比例函數(shù)和反比例函數(shù)的關(guān)系式;
(3)P(m,n)是函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),其中0<m<3.過點(diǎn)P作PB⊥y軸于點(diǎn)B,過點(diǎn)A作AC⊥x軸于點(diǎn)C,直線PB、AC交于點(diǎn)D.當(dāng)P為線段BD的中點(diǎn)時(shí),求△POA的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點(diǎn)A.
(1)求k的值;
(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,得到△COD,其中點(diǎn)A與點(diǎn)C對(duì)應(yīng),試判斷點(diǎn)D是否在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延長(zhǎng)線于F點(diǎn),則CF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)y=的圖象交于點(diǎn)A(2,3),
(1)求k,m的值;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com