精英家教網 > 初中數學 > 題目詳情
如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數式表示EM、FN,并探究EM、FN、BH之間的數量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數關系式.x為何值時,S有最大值?并求出S的最大值.
解:(1)證明:∵AB=BC,∴∠A=∠C。
∵PE∥AB,∴∠CPE=∠A。
∴∠CPE=∠C。∴△PCE是等腰三角形。
(2)∵△PCE是等腰三角形,EM⊥CP,∴CM=CP=,tanC=tanA=k。
∴EM=CM•tanC=•k=。
同理:FN=AN•tanA=•k=4k﹣。
由于BH=AH•tanA=×8•k=4k,EM+FN=+4k﹣=4k,
∴EM+FN=BH。
(3)當k=4時,EM=2x,FN=16﹣2x,BH=16,
∴SPCE=x•2x=x2,SAPF=(8﹣x)•(16﹣2x)=(8﹣x)2,SABC=×8×16=64。
。
∴當k=4時,四邊形PEBF的面積S與x的函數關系式為。
,
∴當x=4時,S有最大值32。
(1)根據等邊對等角可得∠A=∠C,然后根據兩直線平行,同位角相等求出∠CPE=∠A,從而得到∠CPE=∠C,即可得證。
(2)根據等腰三角形三線合一的性質求出CM=CP,然后求出EM,同理求出FN、BH的長,再根據結果整理可得EM+FN=BH。
(3)分別求出EM、FN、BH,然后根據SPCE,SAPF,SABC,再根據,整理即可得到S與x的關系式,然后利用二次函數的最值問題解答!
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.

(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;
(3)在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.

(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:一元二次方程
(1)求證:不論k為何實數時,此方程總有兩個實數根;
(2)設k<0,當二次函數的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(2013年四川瀘州12分)如圖,在直角坐標系中,點A的坐標為(﹣2,0),點B的坐標為(1,),已知拋物線y=ax2+bx+c(a≠0)經過三點A、B、O(O為原點).

(1)求拋物線的解析式;
(2)在該拋物線的對稱軸上,是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由;
(3)如果點P是該拋物線上x軸上方的一個動點,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.(注意:本題中的結果均保留根號)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的邊OA=2,OC=6,在OC上取點D將△AOD沿AD翻折,使O點落在AB邊上的E點處,將一個足夠大的直角三角板的頂點P從D點出發(fā)沿線段DA→AB移動,且一直角邊始終經過點D,另一直角邊所在直線與直線DE,BC分別交于點M,N.
(1)填空:D點坐標是(  ,  ),E點坐標是(  ,  );
(2)如圖1,當點P在線段DA上移動時,是否存在這樣的點M,使△CMN為等腰三角形?若存在,請求出M點坐標;若不存在,請說明理由;

(3)如圖2,當點P在線段AB上移動時,設P點坐標為(x,2),記△DBN的面積為S,請直接寫出S與x之間的函數關系式,并求出S隨x增大而減小時所對應的自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數,當自變量x取m對應的函數值大于0,設自變量分別取m-3,m+3 時對應的函數值為y1,y2,則
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知二次函數的圖象如圖所示,有下列5個結論:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數)。
其中正確結論的序號有     。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數y=ax2+bx+c(a≠0)的圖象如圖如圖所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.則M,N,P中,值小于0的數有
A.3個B.2個C.1個D.0個

查看答案和解析>>

同步練習冊答案