已知:一元二次方程
(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;
(2)設k<0,當二次函數(shù)的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?
解:(1)證明:∵,
∴關于x的一元二次方程,不論k為何實數(shù)時,此方程總有兩個實數(shù)根。

(2)令y=0,則。
,
,即,
解得k=3或k=﹣1。
∵k<0,∴k=﹣1。
∴此二次函數(shù)的解析式是。
(3)由(2)知,拋物線的解析式是,
易求A(﹣1,0),B(3,0),C(1,﹣2),
∴AB=4,AC=2,BC=2。
∴AC2+BC2=AB2。
∴△ABC是等腰直角三角形.AB為斜邊。
∴外接圓的直徑為AB=4!喋2≤m≤2。
(1)根據(jù)一元二次方程的根的判別式△=b2﹣4ac的符號來判定已知方程的根的情況。
(2)利用根與系數(shù)的關系列出關于k的方程,通過解方程來求k的值。
(3)根據(jù)直線與圓的位置的位置關系確定m的取值范圍!
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線與x軸交于點A(1,0),B(3,0),且過點C(0,﹣3).

(1)求拋物線的解析式和頂點坐標;
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在直線y=﹣x上,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C.

(1)求點A、B、C、D的坐標;
(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;
(3)取點E(,0)和點F(0,),直線l經(jīng)過E、F兩點,點G是線段BD的中點.
①點G是否在直線l上,請說明理由;
②在拋物線上是否存在點M,使點M關于直線l的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1.0),C(0,﹣3).

(1)求拋物線的解析式;
(2)若點P為第三象限內拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,頂點為M的拋物線經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,對于下列結論:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正確的個數(shù)是【   】
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數(shù)關系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=x2+2mx+2,當x>2時,y的值隨x值的增大而增大,則實數(shù)m的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,拋物線所表示的函數(shù)解析式為y=﹣2(x﹣h)2+k,則下列
結論正確的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0

查看答案和解析>>

同步練習冊答案