【題目】(本題8分)ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.

(1)按要求作圖:

①畫出ABC關于原點O的中心對稱圖形A1B1C1;

②畫出將ABC繞點A逆時針旋轉90°得到AB2C2,

(2)回答下列問題:

①△A1B1C1中頂點A1坐標為 ②若P(a,b)為ABC邊上一點,則按照(1)中①作圖,點P對應的點P1的坐標為

【答案】(1)作圖見解析;(2)(1,-2)(-a,-b)

【解析】試題分析:(1)首先找出對應點的位置,再順次連接即可;

2根據(jù)圖形可直接寫出坐標;根據(jù)關于原點對稱點的坐標特點可得答案.

試題解析:(1)如圖所示:

2根據(jù)圖形可得A1坐標為(2﹣4);

P1的坐標為(﹣a﹣b).

故答案為:(﹣2,﹣4);(﹣a,﹣b).

考點:作圖-旋轉變換.

型】填空
束】
23

【題目】在學習了普查與抽樣調查之后,某校八(1)班數(shù)學興趣小組對該校學生的視力情況進行了抽樣調查,并畫出了如圖所示的條形統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:

(1)本次抽查活動中共抽查了  名學生;

(2)已知該校七年級、八年級、九年級學生數(shù)分別為360人、400人、540人.

①試估算:該校九年級視力不低于4.8的學生約有  名;

②請你幫忙估算出該校視力低于4.8的學生數(shù).

【答案】(1)145;(2)216;(3)該校視力低下4.8的學生數(shù)為604.

【解析】(1)求出各組的人數(shù)的和即可;

(2)①利用九年級的人數(shù)乘以對應的比例即可求解;

②利用各班的人數(shù)乘以對應的比例求解.

詳解:(1)本次抽查的人數(shù)是:10+35+25+25+30+20=145(人),

故答案是:145;

(2)①九年級視力不低于4.8的學生約有540×=216(人),

故答案是:216;

②該校視力低于4.8的學生數(shù)360×+400×+540×=604(人).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為﹣3,0,1,點P為數(shù)軸上任意一點,其對應的數(shù)為x.

(1)如果點P到點M、點N的距離相等,那么x的值是   

(2)x=   時,使點P到點M、點N的距離之和是5;

(3)如果點P以每秒鐘3個單位長度的速度從點O向左運動時,點M和點N分別以每秒鐘1個單位長度和每秒鐘4個單位長度的速度也向左運動,且三點同時出發(fā),那么   秒鐘時點P到點M,點N的距離相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】像一個人臉郁悶的神情.如圖,邊長為a的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個字圖案(陰影部分),設剪去的兩個小直角三角形的兩直角邊長分別為x、y,剪去的小長方形長和寬也分別為x,y.

(1)用式子表示的面積S;(用含a、x、y的式子表示)

(2)當a=20,x=5,y=4時,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為48cm,∠A=60°,動點P從點A出發(fā),沿著線路AB﹣BD做勻速運動,動點Q從點D同時出發(fā),沿著線路DC﹣CB﹣BA做勻速運動.

(1)求BD的長;

(2)已知動點P、Q運動的速度分別為8cm/s、10cm/s.經(jīng)過12秒后,P、Q分別到達M、N兩點,試判斷△AMN的形狀,并說明理由,同時求出△AMN的面積;

(3)設問題(2)中的動點P、Q分別從M、N同時沿原路返回,動點P的速度不變,動點Q的速度改變?yōu)閍 cm/s,經(jīng)過3秒后,P、Q分別到達E、F兩點,若△BEF為直角三角形,試求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線AB經(jīng)過點O,∠COD=90°,OE∠BOC的平分線.

(1)如圖1,若∠AOC=50°,求∠DOE;

(2)如圖1,若∠AOC=α,∠DOE;(用含α的式子表示)

(3)將圖1中的∠COD繞頂點O順時針旋轉到圖2的位置,其它條件不變,(2)中的結論是否還成立?試說明理由;

(4)將圖1中的∠COD繞頂點O逆時針旋轉到圖3的位置,其它條件不變,求∠DOE.(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一、二、三、四這四個扇形的面積之比為1:3:5:1.

(1)請分別求出它們圓心角的度數(shù).

(2)一、二、四這三個扇形的圓心角的度數(shù)之和是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角△ABC中,∠ACB=90°,點E為△ABC內一點,且∠BEC=90°,將△BEC繞C點順時針旋轉90°,使BC與AC重合,得到△AFC,連接EF交AC于點M,已知BC=10,CF=6,則AM:MC的值為(
A.4:3
B.3:4
C.5:3
D.3:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐵路貨運調度站有A、B兩個信號燈,在燈這旁停靠著甲、乙、丙三列火車.它們中最長的車長與居中車長之差等于居中車長與最短車長之差,其中乙車的車長居中,最開始的時候,甲、丙兩車車尾對齊,且車尾正好位于A信號燈處,而車頭則沖著B信號燈的方向,乙車的車尾則位于B信號燈處,車頭則沖著A的方向,現(xiàn)在,三列火車同時出發(fā)向前行駛,3秒之后三列火車的車頭恰好相遇,再過9秒,甲車恰好超過丙車,而丙車也正好完全和乙車錯開,請問:甲乙兩車從車頭相遇直到完全錯開一共用了_____秒鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上,點A、B分別表示點﹣5、3,M、N兩點分別從A、B同時出發(fā)以3cm/s、1cm/s的速度沿數(shù)軸向右運動.

(1)求線段AB的長;

(2)求當點M、N重合時,它們運動的時間;

(3)M、N在運動的過程中是否存在某一時刻,使BM=2BN.若存在請求出它們運動的時間,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案