【題目】如圖,矩形ABCD接于半徑為2.5的⊙O,AB=4, 延長(zhǎng)BA到E,使AE=,連接ED.
(1)求證:直線ED是⊙O的切線;
(2)連接EO交AD于F,求FO的長(zhǎng).
【答案】(1)見(jiàn)解析;(2).
【解析】分析:(1)連結(jié)BD.由ABCD是矩形,得到BD的長(zhǎng).在Rt△ABD中,由勾股定理得到AD的長(zhǎng).在Rt△AED中,由勾股定理得到ED2.在△BED中,由勾股定理得到BE2,從而得到BD2=BE2-ED2,由勾股定理的逆定理得到∠BDE=90°,從而得到結(jié)論.
(2)過(guò)點(diǎn)O作OH⊥AB于H,由垂徑定理得到AH=BH=2.由三角形中位線定理得到OH=AD=1.5.在Rt△EHO中,由勾股定理得到EO的長(zhǎng).再由OH∥AD,得到,從而得到結(jié)論.
詳解:(1)連結(jié)BD.
∵ABCD是矩形,∴∠BAD=90°,∴BD是直徑,∴BD=5.
在Rt△ABD中,AD==3,
∠EAD=180°-∠BAD=90°.
在Rt△AED中,ED2=AD2+AE2=.
在△BED中,BE2=(4+ )2=,BD2=25,BE2-ED2=-=25,
∴BD2=BE2-ED2,∴∠BDE=90°.
又∵BD是直徑,∴ED是⊙O的切線.
(2)過(guò)點(diǎn)O作OH⊥AB于H,則AH=BH=AB=2.
又∵OB=OD,∴OH=AD=1.5.
在Rt△EHO中,EO==.
∵∠OHB=∠DAB=90°,∴OH∥AD.
∴.
∴OF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為Q(2,-1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.
【1】求該拋物線的函數(shù)關(guān)系式;
【1】求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD的最大值;
【1】當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
【1】在題(3)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b表示,且(a-20)2+|b+10|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;
(2)已知線段OB上有點(diǎn)C且|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);
(3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,…….點(diǎn)P能移動(dòng)到與A或B重合的位置嗎?若不能,請(qǐng)直接回答;若能,請(qǐng)直接指出,第幾次移動(dòng),與哪一點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一長(zhǎng)方形休閑廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓的花壇,正中設(shè)計(jì)一個(gè)圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場(chǎng)長(zhǎng)為米,寬為米.
(1)請(qǐng)列式表示廣場(chǎng)空地的面積;
(2)若休閑廣場(chǎng)的長(zhǎng)為400米,寬為300米,圓形花壇的半徑為20米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明元旦節(jié)吃完晚飯后6點(diǎn)過(guò)還沒(méi)到7點(diǎn),他陪他媽到成華區(qū)SM廣場(chǎng)去買(mǎi)東西,離家時(shí)他發(fā)現(xiàn)他家的時(shí)鐘上時(shí)針與分針剛好重合,他離家的時(shí)間是_______(用幾點(diǎn)幾分幾秒表示,注意“四舍五入”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對(duì)邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫(xiě)出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇同學(xué)的思路寫(xiě)出證明過(guò)程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是邊長(zhǎng)為的等邊△ABC的內(nèi)心,將△OBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到△OB1C1,B1C1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E,則CE=( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用火柴棒按如圖方式拼圖,第1個(gè)圖形共用3根火柴棒,第2個(gè)圖形共用9根火柴棒,第3個(gè)圖形共用18根火柴棒,……按照這樣的方式繼續(xù)拼圖,第n個(gè)圖形共用_____根火柴棒.(用含n的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com