如圖,已知拋物線y=
1
4
x2+1,直線y=kx+b經(jīng)過點(diǎn)B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點(diǎn)B旋轉(zhuǎn)到與x軸平行的位置時(shí)(如圖1),直線與拋物線y=
1
4
x2+1相交,其中一個(gè)交點(diǎn)為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點(diǎn)B旋轉(zhuǎn),與拋物線相交,其中一個(gè)交點(diǎn)為P'(如圖②),過點(diǎn)P'作x軸的垂線P'M,點(diǎn)M為垂足.是否存在這樣的點(diǎn)P',使△P'BM為等邊三角形?若存在,請求出點(diǎn)P'的坐標(biāo);若不存在,請說明理由.
(1)∵直線y=kx+b過點(diǎn)B(0,2),
∴b=2.

(2)y=kx+b繞點(diǎn)B旋轉(zhuǎn)到與x軸平行,即y=2,
∴P(2,2)或P(-2,2),
依題意有:
1
4
x2+1=2,
x=±2,
∴P(2,2)或P(-2,2).

(3)假設(shè)存在點(diǎn)P'(x0,y0),使△P'BM為等邊三角形,
如圖,則∠BP'M=60°
P'M=y0P'B=2(P'M-2)=2(y0-2)
且P'M=P'B
即y0=2(y0-2)
y0=4
又點(diǎn)P′在拋物線y=
1
4
x2+1上
1
4
x2+1=4
x=±2
3

∴當(dāng)直線y=kx+b繞點(diǎn)B旋轉(zhuǎn)時(shí)與拋物線y=
1
4
x2+1相交,存在一個(gè)交點(diǎn)P′(2
3
,4)或P′(-2
3
,4)
使△P'BM為等邊三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點(diǎn),且對稱軸為直線x=4.設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);
(2)如圖1,在直線y=2x上是否存在點(diǎn)D,使四邊形OPBD為等腰梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)如圖2,點(diǎn)M是線段OP上的一個(gè)動(dòng)點(diǎn)(O、P兩點(diǎn)除外),以每秒
2
個(gè)單位長度的速度由點(diǎn)P向點(diǎn)O運(yùn)動(dòng),過點(diǎn)M作直線MNx軸,交PB于點(diǎn)N.將△PMN沿直線MN對折,得到△P1MN.在動(dòng)點(diǎn)M的運(yùn)動(dòng)過程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t秒.求S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=(3-m)x2+2(m-3)x+4m-m2的最低點(diǎn)A的縱坐標(biāo)是3,直線y=mx+b經(jīng)過點(diǎn)A,與y軸交于點(diǎn)B,與x軸交于點(diǎn)C.
(1)求拋物線與直線AB的解析式.
(2)將直線AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,與x軸交于點(diǎn)D,與y軸交于點(diǎn)E,求sin∠BDE的值.
(3)過B點(diǎn)作x軸的平行線BG,點(diǎn)M在直線BG上,且到拋物線的對稱軸的距離為6,設(shè)點(diǎn)N在直線BG上,請你直接寫出使得∠AMB+∠ANB=45°的點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司推出一款新型手機(jī),投放市場以來前3個(gè)月的利潤情況如圖所示,該圖可以近似看作拋物線的一部分.請結(jié)合圖象,解答以下問題:
(1)求該拋物線對應(yīng)的二次函數(shù)解析式;
(2)該公司在經(jīng)營此款手機(jī)過程中,第幾月的利潤能達(dá)到24萬元?
(3)若照此經(jīng)營下去,請你結(jié)合所學(xué)的知識,對公司在此款手機(jī)的經(jīng)營狀況(是否虧損?何時(shí)虧損?)作預(yù)測分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線形拱橋,在正常水位AB時(shí),水面AB寬24m,拱頂距離水面4m.以拋物線的頂點(diǎn)為原點(diǎn),以拋物線的對稱軸為y軸,建立如圖所示的平面直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)若水位上升3m就達(dá)到警戒線CD的位置,求這時(shí)水面CD的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算機(jī)把數(shù)據(jù)存儲在磁盤上,磁盤是帶有磁性物質(zhì)的圓盤,磁盤上有一些同心圓軌道叫做磁道.如圖,現(xiàn)有一張半徑為45mm,有
10
3
(45-r)條磁道的磁盤,這張磁盤最內(nèi)磁道的半徑為rmm.
(1)磁盤最內(nèi)磁道上每0.015mm的弧長為1個(gè)存儲單元,用r的代數(shù)式表示這條磁道有多少個(gè)存儲單元?
(2)如果各磁道的存儲單元數(shù)目與最內(nèi)磁道相同,且磁盤的存儲量是225000π個(gè)存儲單元,求最內(nèi)磁道的半徑r是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某果品公司為指導(dǎo)今年的櫻桃銷售,對往年的市場銷售情況進(jìn)行調(diào)查統(tǒng)計(jì),得到如下數(shù)據(jù):
銷售價(jià)x(元/kg)25242322
銷售量y(kg)2000250030003500
(1)在如圖坐標(biāo)系中作出各組有序數(shù)對(x,y)所對應(yīng)點(diǎn),連接并觀察所得圖象,判定y與x之間函數(shù)關(guān)系式,并求出y與x關(guān)系式.
(2)若櫻桃進(jìn)價(jià)為12元/kg,求銷售利潤P(元)與銷售價(jià)x(元/kg)之間函數(shù)關(guān)系式,并求售價(jià)多少元時(shí),利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分).則下列結(jié)論錯(cuò)誤的是( 。
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.當(dāng)0<t≤5時(shí),y=
2
5
t2
D.當(dāng)t=
29
4
秒時(shí),△ABE△QBP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2-4ax+c與y軸交于點(diǎn)A(0,3),點(diǎn)B是拋物線上的點(diǎn),且滿足ABx軸,點(diǎn)C是拋物線的頂點(diǎn).
(1)求拋物線的對稱軸及B點(diǎn)坐標(biāo);
(2)若拋物線經(jīng)過點(diǎn)(-2,0),求拋物線的表達(dá)式;
(3)對(2)中的拋物線,點(diǎn)D在線段AB上,若以點(diǎn)A、C、D為頂點(diǎn)的三角形與△AOC相似,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案