【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”
(1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長(zhǎng);
(2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對(duì)角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請(qǐng)你判斷此結(jié)論是否正確,若正確,請(qǐng)說明理由;若不正確,請(qǐng)舉出反例;
(3)如圖2,在△ABC中,AB=AC,∠BAC=90°,BC=2.在AB的垂直平分線上是否存在點(diǎn)P使得以A,B,C,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”?若存在,請(qǐng)求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請(qǐng)說明理由.
【答案】(1)BC=5;(2)正確,理由見解析;(3)存在四種情況,或+1或+1或。
【解析】
(1)根據(jù)勾股定理計(jì)算BC的長(zhǎng);
(2)正確,根據(jù)對(duì)角線互相垂直平分的四邊形是菱形可得結(jié)論;
(3)有四種情況:作輔助線,將四邊形分成兩個(gè)三角形和一個(gè)四邊形或兩個(gè)三角形,相加可得結(jié)論.
解:(1)如圖1,Rt△ACB中,∵BD=4,CD=AB=3,
∴BC==5,
(2)正確,理由是:
如圖3,AB=AD=BC,AC⊥BD,
∴AO=OC,OB=OD,
∴四邊形ABCD是平行四邊形,
∴AB=BC,
∴ABCD是菱形;
(3)存在四種情況,
①如圖2,四邊形ABPC是“準(zhǔn)等邊四邊形”,過C作CF⊥PE于F,則∠CFE=90°,
∵EP是AB的垂直平分線,
∴∠AEF=∠A=90°,
∴四邊形AEFC是矩形,
Rt△ABC中,BC=2,AC=BC,
∴AC=BC=,
∴CF=AE=BE=,
∵AB=PC=,
∴PF==,
∴S四邊形ABPC=S△BEP+S矩形AEFC+S△CFP,
=,
=,
=.
②如圖4,四邊形APBC是“準(zhǔn)等邊四邊形”,
∵AP=BP=AC==AB,
∴△ABP是等邊三角形,
∴S四邊形ACBP=S△APB+S△ABC=+=+1;
③如圖5,四邊形ACBP是“準(zhǔn)等邊四邊形”,
∵AP=BP=BC=2,
∵PE是AB的垂直平分線,
∴PD⊥AB,E是AB的中點(diǎn),
∴BE=AB=,
∴PE===,
∴S四邊形ACBP=S△APB+S△ABC==+1;
④如圖6,四邊形ABPC是“準(zhǔn)等邊四邊形”,過P作PF⊥AC于F,連接AP,
∵AB=AC=PB=,
∴PE=,
S四邊形ABPC=S△APB+S△APC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租汽車公司計(jì)劃購(gòu)買型和型兩種節(jié)能汽車,若購(gòu)買型汽車輛,型汽車輛,共需萬(wàn)元;若購(gòu)買型汽車輛,型汽車輛,共需萬(wàn)元.
(1)型和型汽車每輛的價(jià)格分別是多少萬(wàn)元?
(2)該公司計(jì)劃購(gòu)買型和型兩種汽車共輛,費(fèi)用不超過萬(wàn)元,且型汽車的數(shù)量少于型汽車的數(shù)量,請(qǐng)你給出費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:,過點(diǎn)A(0,1)作y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;……按此作法繼續(xù)下去,則點(diǎn)A2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場(chǎng)里某產(chǎn)品每月銷售量y(只)與銷售單價(jià)x(元)滿足一次函數(shù)關(guān)系,經(jīng)調(diào)查部分?jǐn)?shù)據(jù)如表:(已知每只進(jìn)價(jià)為10元,每只利潤(rùn)=銷售單價(jià)-進(jìn)價(jià))
銷售單價(jià)x(元) | 21 | 23 | 25 | … |
月銷售額y(只) | 29 | 27 | 25 | … |
(1)求出y與x之間的函數(shù)表達(dá)式;
(2)這產(chǎn)品每月的總利潤(rùn)為w元,求w關(guān)于x的函數(shù)表達(dá)式,并指出銷售單價(jià)為多少元時(shí)利潤(rùn)最大,最大利潤(rùn)是多少元?
(3)由于該產(chǎn)品市場(chǎng)需求量較大,進(jìn)價(jià)在原有基礎(chǔ)上提高了a元(a<10),但每月銷售量與銷售價(jià)仍滿足上述一次函數(shù)關(guān)系,此時(shí),隨著銷售量的增大,所得的最大利潤(rùn)比(2)中的最大利潤(rùn)減少了144元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,含30°和45°角的兩塊三角板ABC和DEF疊合在一起,邊BC與EF重合,BC=EF=12cm,點(diǎn)P為邊BC(EF)的中點(diǎn),現(xiàn)將三角板ABC繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)角度α(如圖2),設(shè)邊AB與EF相交于點(diǎn)Q,則當(dāng)a從0°到90°的變化過程中,點(diǎn)Q移動(dòng)的路徑長(zhǎng)為_____(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東。┤鐖D,AB是⊙O的直徑,AB=,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長(zhǎng)度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對(duì)稱軸上是否存在點(diǎn)P,使PA+PC的值最?若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由;
(3)M是直線OC上方拋物線C2上的一個(gè)動(dòng)點(diǎn),連接MO,MC,M運(yùn)動(dòng)到什么位置時(shí),△MOC面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店每天的房租、人員工資等固定成本250元,水果進(jìn)價(jià)是5元/斤,物價(jià)局規(guī)定售價(jià)不得高于12元/斤,也不得低于7元/斤,調(diào)查發(fā)現(xiàn)日均銷量y(斤)與售價(jià)x(元)滿足一次函數(shù)關(guān)系,圖象如圖.
(1)求日均銷量y(斤)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并寫出自變量取值范圍;
(2)設(shè)每天凈利潤(rùn)為W元,那么定價(jià)多少時(shí),可獲得最大凈利潤(rùn)?最大是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com