(2013•惠山區(qū)一模)已知:如圖,點(diǎn)O是平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A的坐標(biāo)為(0,-4),點(diǎn)B為x軸上一動(dòng)點(diǎn),以線段AB為邊作正方形ABCD(按逆時(shí)針?lè)较驑?biāo)記),正方形ABCD隨著點(diǎn)B的運(yùn)動(dòng)而隨之相應(yīng)變動(dòng).點(diǎn)E為y軸的正半軸與正方形ABCD某一邊的交點(diǎn),設(shè)點(diǎn)B的坐標(biāo)為(t,0),線段OE的長(zhǎng)度為m.
(1)當(dāng)t=3時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng)t>0時(shí),求m與t之間的函數(shù)關(guān)系式;
(3)是否存在t,使點(diǎn)M(-2,2)落在正方形ABCD的邊上?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)由點(diǎn)C向x軸作垂線,構(gòu)造△BFC≌△AOB,從而求出點(diǎn)C的坐標(biāo);
(2)分0<t≤4和t>4兩種情況討論,然后利用三角形相似求解;
(3)分t<0,0<t≤4和t>4三種情況討論,結(jié)合圖形進(jìn)行解答.
解答:解:(1)由點(diǎn)C向x軸作垂線,垂足為F,則△AOB≌△BFC,所以CF=BO=3,BF=OA=4,故點(diǎn)C的坐標(biāo)為(-1,3)(3分)

(2)當(dāng)0<t≤4時(shí),CB與y軸交于點(diǎn)E,∵∠OBE+∠OBA=90°,∠OBE+∠OEB=90°,∴∠OEB=∠OBA,又∵∠AOB=∠BOE=90°,
∴△AOB∽△BOE,∴,∴;(5分)
當(dāng)t>4時(shí),CD與y軸交于點(diǎn)E,∵∠OAB+∠EAD=90°,∠DAE+∠DEA=90°,∴∠OAB=∠DEA,又∵∠AOB=∠ADE=90°,
∴△AOB∽△EDA,∴,其中AB=AD=,AE=m+4,OB=t,∴m=t+-4;(7分)
故m=;

(3)存在,
①當(dāng)t≤0時(shí)
∵正方形ABCD位于x軸的下方(含x軸)∴此時(shí)不存在(8分)
②當(dāng)0<t≤4時(shí),
當(dāng)點(diǎn)M在BC邊上時(shí),t=2,或t=-4(舍)(9分)
當(dāng)點(diǎn)M在CD邊上時(shí),t=2,或t=4(10分)
③當(dāng)t>4時(shí),
當(dāng)點(diǎn)M在CD邊上時(shí),t=2(舍);t=4(舍) (11分)
當(dāng)點(diǎn)M在AD邊上時(shí),t=12 (12分)
綜上所述:存在,符合條件的t的值為2、4、12.
點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì).搞清楚B點(diǎn)運(yùn)動(dòng)時(shí)y軸與正方形邊長(zhǎng)的位置關(guān)系,及正方形中的三角形的三邊關(guān)系,可有助于提高解題速度和準(zhǔn)確率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠山區(qū)一模)1的相反數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠山區(qū)一模)小麗在清點(diǎn)本班為偏遠(yuǎn)貧困地區(qū)的捐款時(shí)發(fā)現(xiàn),全班同學(xué)捐款的鈔票情況如下:100元的3張,50元的9張,10元的23張,5元的10張.在這些不同面額的鈔票中,眾數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠山區(qū)一模)如圖,已知雙曲線y=-
3
x
經(jīng)過(guò)Rt△OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.則△AOC的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠山區(qū)一模)(1)解方程:3x2-6x-1=0;
(2)解不等式組:
x+4≤3(x+2)
x-1
2
x
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠山區(qū)一模)已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)(1,
21
4
),(2,
11
2
)兩點(diǎn),與x軸的兩個(gè)交點(diǎn)的右邊一個(gè)交點(diǎn)為點(diǎn)A,與y軸交于點(diǎn)B.
(1)求此二次函數(shù)的解析式并畫出這個(gè)二次函數(shù)的圖象;
(2)求線段AB的中垂線的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案