【題目】如圖,在△ABC中,∠C=45°,∠B=60°,BC為+1,點(diǎn)P為邊AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,PE⊥AC于點(diǎn)E,則DE的最小值為_____.
【答案】
【解析】
當(dāng)CP⊥AB時(shí),線(xiàn)段DE的值最小,利用四點(diǎn)共圓的判定可得:C、D、P、E四點(diǎn)共圓,且直徑為CP,由∠B=60°,BC為+1,求出PC,從而得出半徑OD的長(zhǎng)度,然后由∠ACB=45°,得到∠EOD=90°,利用等腰直角三角形的性質(zhì),可求出DE的值.
解:當(dāng)CP⊥AB時(shí),線(xiàn)段DE的值最小(因?yàn)樗倪呅?/span>C、D、P、E四點(diǎn)共圓,PC是直徑,BC=和∠B=60°是定值,所以直徑CP最小時(shí),∠DCE所對(duì)的弦DE最。蝗鐖D:
∵PD⊥BC于D,PE⊥AC于E,
∴∠CDP=∠AEP=90°,
∴∠CDP+∠AEP=180°,
∴C、D、P、E四點(diǎn)共圓,且直徑為CP,
∵∠B=60°,CP⊥AB,BC=,
∴,即,
∴,
∴,
∵∠ACB=45°,
∴∠EOD=90°,
∴△OED是等腰直角三角形,
∴;
∴DE的最小值為:.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是的直徑,是的弦,平分交于點(diǎn),連接、,過(guò)點(diǎn)作,交的延長(zhǎng)線(xiàn)于點(diǎn).
(1)________(填“>”,“<”或“=”);
(2)求證:是的切線(xiàn);
(3)若的直徑為10,sin∠BAC=,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線(xiàn)AD平移到△A′B′C′的位置,已知△ABC的面積為18,陰影部分三角形的面積為8,若AA′=1,則A′D的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:我們把關(guān)于某一點(diǎn)成中心對(duì)稱(chēng)的兩條拋物線(xiàn)叫“孿生拋物線(xiàn)”;(1)已知拋物線(xiàn)L:y=﹣x2+4與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn),求L關(guān)于坐標(biāo)原點(diǎn)O(0,0)的“孿生拋物線(xiàn)”W;(2)點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),且△BCN是以BC為斜邊的等腰直角三角形,在x軸是否存在一點(diǎn)M(m,0),使拋物線(xiàn)L關(guān)于點(diǎn)M的“孿生拋物線(xiàn)”過(guò)點(diǎn)N,如果存在,求出M點(diǎn)坐標(biāo);不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA與⊙O相切于點(diǎn)A,過(guò)點(diǎn)A作AB⊥OP,垂足為C,交⊙O于點(diǎn)B.連接PB,AO,并延長(zhǎng)AO交⊙O于點(diǎn)D,與PB的延長(zhǎng)線(xiàn)交于點(diǎn)E.
(1)求證:PB是⊙O的切線(xiàn);
(2)若OC=3,AC=4,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某市政部門(mén)招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫(kù)的土方施工任務(wù).該工程隊(duì)有兩種型號(hào)的挖掘機(jī),已知3臺(tái)型和5臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土165立方米;4臺(tái)型和7臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土225立方米.每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為300元,每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為180元.
(1)分別求每臺(tái)型, 型挖掘機(jī)一小時(shí)挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機(jī)共12臺(tái)同時(shí)施工4小時(shí),至少完成1080立方米的挖土量,且總費(fèi)用不超過(guò)12960元.問(wèn)施工時(shí)有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是直角三角形,.
(1)請(qǐng)用尺規(guī)作圖法,作,使它與相切于點(diǎn),與相交于點(diǎn);保留作圖痕跡,不寫(xiě)作法,請(qǐng)標(biāo)明字母)
(2)在(1)的圖中,若,,求弧的長(zhǎng).(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2+bx+c與一直線(xiàn)相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線(xiàn)及直線(xiàn)AC的函數(shù)關(guān)系式;
(2)若P是拋物線(xiàn)上位于直線(xiàn)AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最。舸嬖,請(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com